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Abstract
This paper presents a new data structure for light field ren-
dering, which resembles a Star Trek holodeck in form and
function.  The grid on a holodeck section acts as a four-
dimensional rendering target for a ray tracing algorithm,
whose goal is to update an interactive display.  A holodeck
server coordinates separate ray evaluation and display proc-
esses, optimizing disk and memory usage. Holodeck data
may also be computed off-line, and displayed later with or
without an interactive ray calculation. Since the rendering
hardware is not being taxed by either geometry or lighting,
the net result is interactive walk-throughs of complex
spaces with arbitrary surface reflection functions.

1. Introduction

An important goal in computer graphics is to produce
realistic renderings in real time, simulating a window into a
virtual world that the user may alter.  As a practical matter,
realism and real-time interaction need to be balanced for a
particular application.  It may be possible in one case to
achieve real-time frame rates by reducing realism to what
the graphics hardware will support.  In another case, we
may be willing to tolerate reduced interactivity to achieve
the best-looking or most accurate results.  In this paper, we
consider applications where physical accuracy is critical,
and we want to get there as fast as we can, provided we do
get there eventually.  We specifically look at how we can
improve the interactive visualization capabilities of a
physically-based ray tracing solution to global illumination
through parallel processing and view ray sample caching.
The principal benefit of our method over typical image-
based rendering (IBR) approaches is that the entire repre-
sentation need not be precomputed before a user can begin
touring the scene.

Two basic approaches to interactive ray traced imagery
have emerged over the years.  The first approach is to
update the display progressively as rays are traced for a
particular view.  This can be done by simply drawing
progressively smaller rectangles [Painter89], or by using
more sophisticated representations, such as constrained
Delaunay triangulations and texture maps [Pighin97].  The
second approach is to precompute a holographic scene
representation, and compress it for quick synthesis of
particular views [Levoy96] [Gortler96].  The problem with
the first approach is that all information about a particular
view is lost once the viewer moves to a new position, where
the image must be recalculated from scratch.  The problem

with the second approach is that all possible views must be
precalculated at the outset, which is inefficient, and
precludes the possibility of iterative scene changes.

In this paper, we present a third approach, which combines
a holographic scene representation with a parallel, interac-
tive ray calculation.  Rays are computed, cached, and
eventually stored to disk using a holodeck data structure --
a spatial grid used to sort rays without regard to sampling
density.  These rays are reused for subsequent views, which
may be refined while the view is stationary.  Each ray inter-
section distance is recorded along with the floating point
color to enhance display processing.  This requires a total of
10 bytes per sample in our implementation.  Rays are clus-
tered together into beams for efficient disk access, so no
compression or “development” stage is required.  Typical
holodeck files range from 50 Mbytes to 1 Gbyte, depending
on resolution and the number of sections.  Although large,
these data structures may be kept on CD-ROM or other
mass storage devices for rapid access and rerendering, and
do not need to be kept in memory.

We start by describing our method, including the holodeck
representation, the three-process program design, and basic
display representations.  This is followed by an exposition
of our results, where we give example scenes, views and
timings.  Finally, we conclude with some discussion of the
technique, and a few ideas for the future.

2. Method

To assure optimal reuse of ray computations, we need a
data structure that allows us to rapidly store and retrieve ray
samples -- in less time than it would take to recompute
them.  We begin with the observation that, although each
ray has an origin point corresponding to the eye, its com-
puted radiance is valid anywhere along its length, and may
be valid behind the origin as well, so long as there are no
obstructions1.  Since our goal is to move about in a virtual
environment, and motion happens most naturally in unob-
structed regions, we decided to combine the notion of a
hologram with an unobstructed region of free movement,
which we call a holodeck section.  Rays will pass freely
through such regions, and their entry and exit points will be

                                                       
1 The physical unit of radiance is the quantity of light passing
through a point in a given direction, which is expressed in
watts/steradian/meter2 in Standard International (SI) units.
Radiance is constant along an unobstructed ray, which implies
that there is no participating medium.  Although there are ways to
overcome this limitation, we will not explore them in this paper.
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recorded along with their computed values.  Any view point
within a region will access the rays that pass near it; thus
rays will be reused along their length to the greatest extent
possible.  This is very similar to the light field and
lumigraph constructs presented by Levoy and Hanrahan
[Levoy96] and Gortler et al [Gortler96], except that there is
no development step -- rays are stored and retrieved
interactively.

The lack of any development step and the need for rapid
access have two important implications.  First, ray samples
are going to take up a lot of space -- since we cannot afford
to perform coherency-based compression, everything may
not fit in memory.  Second, we require some kind of virtual
memory (VM) management.  Although we could leave this
task to the operating system, it was immediately apparent
that the common algorithms for VM management are too
expensive and inefficient for our needs.  We therefore
created a holodeck server process, which manages one or
more holodeck sections, keeping the most recently used ray
samples resident in a finite memory cache.

To compute ray samples, we use the Radiance rtrace pro-
gram, which is freely available and does a good job com-
puting global illumination in complicated environments
[Ward94].  This program also lends itself well to parallel
processing on multiprocessor and networked systems,
which is important for achieving good interactivity.
Although we chose to use Radiance, we could have picked
any program that computes ray sample values.  The ability
to direct the samples is a plus, but even a pure Monte Carlo
method, which generates random rays in an environment,
could be used to fill a holodeck.  The end result captures the
full light field, unlike density estimation methods, which
usually to throw away directional information [Shirley95].

Along with each computed radiance, we store the ray
distance so we may reproject sample points onto our
displayed image.  This minimizes image blurring, which
would otherwise be caused by rays not passing exactly
through our current view point.  There will still be some
problems computing occlusion, but we can address this with
some clever drawing techniques.

Overall, our system normally consists of three logical proc-
esses:  a holodeck server, a ray calculation, and a display
process.  This arrangement is diagrammed in Figure 1.
The holodeck server controls access to the holodeck file,
and the display process controls access to the display,
keyboard and mouse.  One or more rtrace processes
perform the actual ray tracing, and interprocess
communication flows through TCP/IP sockets.  The
holodeck server may also be run without an rtrace process
if a display-only function is desired, or without the display
process for background calculation.

Holodeck
Server

rtrace

rtrace

Display
Process

Holodeck
File

Display
& Input

Figure 1.  Schematic diagram of holodeck rendering
system. Arrows show the flow of information.

In this section, we first describe the holodeck data structure
and how it is set up in a scene.  We then discuss the server
process and how it handles VM management and different
calculation modes.  Third, we discuss the ray calculation
itself.  Fourth, we describe two versions of the display
process, one for X11 and one for OpenGL.  Finally, we
discuss coordination between our three logical processes.

Figure 2.  A holodeck section as seen from inside.  A ray
passing from one grid cell to another is stored together with
other rays in the same beam.  (A beam of three rays is
shown.)

2.1 The Holodeck Data Structure

The holodeck data structure stores information for all the
view rays that have been computed for a particular scene.
In its basic form, a holodeck section is simply a gridded
box, like the one shown in Figure 2.  Rays passing through
a section will pass through two cells on two walls.  Rays
that pass through the same pair of cells in the same direc-
tion are collected into an indexed beam.  All rays for a
particular beam are stored and accessed together on disk,
and a section directory records each beam’s location and
size.  A holodeck file may contain multiple sections, which
represent different regions of free movement in the scene2.
These section boundaries and grid resolutions are set up by
the user based on where they want to go and what they want
to see.

The total number of beams for an W×D×H gridded
holodeck section is:

                                                       
2 In an alternative interpretation, a section may enclose
complicated objects for viewing from the outside.
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N = 2W2D2 + 2W2H2 + 2D2H2 +
8W2DH + 8WD2H + 8WDH2

If the grid is too fine, the section directory becomes large
and unwieldy, taking too much room in memory and too
long to update on disk.  If the grid is too coarse, ray bundles
will not resolve visibility very well.  Thus, it is important to
choose the grid dimensions wisely.  We found grid sizes
between 4 and 24 on a side to work best, with a target N of
about 106.

The shape of a holodeck section is also important.  If it is
too narrow in any one dimension, it will not produce a good
distribution of beams.  For example, if the distance between
an opposing pair of walls is the same size as the grid cells
on those walls, a beam going straight across will contain
rays that vary by more than 90° in their direction!  The
optimal section shape is a cube, but we found paral-
lelepipeds with aspect ratios as high as 1:5 work quite well.
Long, narrow passageways and large rooms with low
ceilings are usually broken up into multiple sections to
avoid problems.  It is not necessary for each section to abut
its neighbor, since views can be maintained somewhat
outside of holodeck sections as well.  (This is explained in
the Display Process section and demonstrated in the Results
section.)

As we mentioned in the introduction, each view ray sample
is encoded into ten bytes in our holodeck structure.  This
encoding is detailed in Table 1.  The ray color is stored in
the four-byte, RGBE floating-point format native to
Radiance [Ward91].  This format covers a wide dynamic
range, which is important so we can compute an appropri-
ate tone mapping at display time [Larson97].  We also
record the ray entry and exit points for our section grid
cells, so we can compute the exact origin and direction of
each sample3.  Since each grid cell already has a fairly
specific location in the world, one byte per degree of
freedom is enough to get a very accurate ray specification.
Together with the ray distance (as measured from the entry
cell), we can derive the surface intersection point to
reproject samples for any view.

Encoded value Size
floating point color 4 bytes
position in starting cell 2 bytes
position in ending cell 2 bytes
ray distance 2 bytes

Table 1.  Ray sample encoding requirements.

To save space, the ray distance is encoded as a 16-bit
unsigned integer, which is encoded as a linear value over a
lower range (0 to 211-1) and a logarithmic value over an
upper range (211 to 216-1).  The exact encoding depends on
the holodeck section size, whose diagonal length deter-
mines the border between the lower and upper ranges.  The
step size for the logarithmic range is taken to match the
linear step at the border, which is (1 + 2-11).  This gives a

                                                       
3 The actual ray origin may be anywhere along the path between
the entry and exit points, depending on the user-specified
calculation parameters discussed in the following subsection.

maximum encoded distance on the order of the section
diagonal times 1013, with an accuracy of 0.05%.

A holodeck file consists of a global information header,
followed by a file offset for the next section directory, fol-
lowed by the first directory.  The last section in the file is
preceded by a zero offset pointer.  A section directory
consists of the world coordinates for the section, grid
dimensions, and a file offset and sample count for each
beam.  After the first section, directories may appear
anywhere in the file, and beam data indexed by the direc-
tories may be interspersed at random.  If a holodeck file
contains only one section, the first offset will be zero, and
all beam data will follow the section directory.  Figure 3
shows a holodeck file layout with three sections.  For
clarity, only a few beam pointers are shown.

header

section 0
directory

section 1
directory

section 2
directory

beam
samples

Figure 3.  Typical holodeck file layout, showing offset
pointers.

2.2 The Holodeck Server

The holodeck server is responsible for maintaining
holodeck file consistency and keeping a cache of most
recently accessed beams in memory.  The server also turns
out to be the most convenient place to manage the ray
calculation and meet the demands of the display process,
which is why it is in the center of our system diagram
(Figure 1).  Most of the time, the server does not require
much of the CPU.  It merely mediates display bundle
requests and keeps the ray tracing processes busy.  How-
ever, there may be significant time spent waiting for disk
seeks and reads, which is why we have to be clever about
how samples are loaded and cached.

As we discussed earlier, holodeck beams are indexed based
on grid cell pairs for each section, and a directory marks
the file location and number of rays for each beam.  A copy
of this directory is kept resident in memory, and is updated
when new ray samples are written to the file.  Initially, the
directory is empty.  As ray samples are computed, beams
are allocated from the cache.  In our implementation,
between 1 and 21 rays are added to a beam at a time,
depending on how quickly rays are being computed.  Once
the cache becomes full, beams are written to the holodeck
file to free up memory, least-recently-used (LRU) beams
first.
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There are three basic server operation modes.  In batch
mode, rays are calculated and stored to the holodeck file
without display.  The beam computation order and density
are determined by the world-volume of each beam, since
beams that cross greater distances and enclose greater
volumes of space are proportionately more likely to contain
a randomly placed view point.  In display-only mode,
sample values are read from the holodeck file for display,
but no ray calculation takes place.  In interactive mode, ray
calculation and file access are driven by the display process,
which tells the server which beams it wants at any given
moment.

In all three modes, the server works from a list of requested
beams, taken either from the display process or derived
from beam volumes for batch operation.  List entries specify
the section, index and desired number of samples for each
beam.  Since error is proportional to M-0.5 for M Monte
Carlo samples, the list is sorted in order of increasing
computed/desired sample counts, which corresponds to a
decreasing computed/desired error ratio.  On each iteration,
one or more beam requests is removed from the head of the
list, and a number of new samples is assigned to the ray
calculation (assuming there is one).  The number of rays
assigned depends on the average time required to compute
each ray and the number of beams in each queue, so that
each ray queue can be emptied within about five seconds.
This was deemed important for system responsiveness --
when a user moves to a new view, they should not have to
wait more than a few seconds for the computational focus to
catch up.  In the interim, the server sends the display
process whatever rays were computed previously.

In batch mode, the holodeck is gradually filled at a density
always proportional to beam volume.  Thus, there is no
minimum time the calculation needs before useful informa-
tion is put into the holodeck.  The server may be killed at
any time, and restarted in interactive mode without data
loss or compromise.  This differs from most rendering
computations, which must proceed until they are done.

2.3 Ray Computation

Rays are evaluated by creating a two-way connection to the
Radiance rtrace program, which takes ray origins and
directions on its standard input and sends evaluated colors
and distances to its standard output.  In our implementa-
tion, multiple rtrace processes may be invoked on a local
multiprocessor machine, with a separate duplex connection
to each process.  The processes share memory and indirect
irradiance values efficiently up to at least 16 invocations,
which is as many as we have had the opportunity to try in
our tests.

Multiple rtrace processes share memory and data using a
system-independent, coarse-grained technique.  Static data,
such as the global scene geometry and materials, are shared
by parallel processes running on the same UNIX host.  The
first process invocation loads and initializes all scene data,
then makes fork(2) system calls to create an appropriate
number of child processes.  Since child processes created in
this way share memory on a copy-on-write basis, all

memory pages created before the first call will be shared so
long as they are not altered.  In most cases, shared scene
data comprises more than 90% of the total memory
requirements, meaning each additional rtrace invocation
adds less than 10% to the single-process usage.

Of the data created during rtrace execution, only the
indirect irradiance values cached as part of the diffuse
interreflection calculation [Ward88] must be shared to
maintain linear speedup (i.e., avoid redundancy in the ray
calculation).  This is accomplished through a semaphore-
locked ambient file that holds all indirect irradiance values
computed by rtrace across multiple sequential and parallel
invocations.  Each process flushes its newly computed
values to this file periodically, using the following routine:

ambsync() begin
obtain write lock on ambient file
if file has grown since last write then

load values added since last write
end if
write new values to file
record file size for next check
unlock file

end ambsync

So long as this routine is not called so frequently that it
creates contention for the file lock, it will not adversely
affect the performance of parallel execution.  So far, we
have never witnessed any delays due to this method.

The global illumination and parallel computation algo-
rithms employed in Radiance are described further in
[Ward94] and [Larson98].

For each rtrace process, the holodeck server tracks a queue
of beam packets submitted for processing.  This queue has a
maximum length, determined by the system’s pipe buffer
size.  Typically, about 400 rays may be queued at one time
without risking deadlock4.  To compute maximum queue
length, we divide this number by maximum packet size,
which is 21 in our implementation (the number of ray
specifications that fit into 512 bytes).  The actual size of
each packet may be adjusted downward to maintain interac-
tivity, as described in the previous section.  Buffered I/O is
flushed automatically after the maximum packet size, or
manually by sending rtrace a zero direction vector.
(Coordinated flushing is also necessary to avoid deadlock.)

The server’s interface to our ray calculation is very simple.
A single routine is given a list of packets to queue up, and it
returns a list of packets that finished.  The total number of
packets available for queuing is determined by the pipe
buffer size, the maximum packet size, and the number of
processes.  We write packets to the shortest queues first,
and after the last packet is queued, we call the UNIX select
function to wait for the first packet to be finished by any of
our rtrace processes.  In many cases, we will get back

                                                       
4 We cannot allow the server process to block when it submits a
new packet for processing, because it would be unavailable to
read the rtrace output, which would be the only way to release
the block.
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several packets, possibly from more than one process,
which are all put in the returned list.

The actual rays traced depend not only on the selected
beam, but also on a user-set parameter, called
OBSTRUCTIONS.  This parameter may be set to True, False,
or neither.  If True, each ray will begin at a random point
on the beam’s entry cell, and proceed toward a random
point on its exit cell.  This way, the ray is guaranteed to
intersect any object lying between its entry and exit point.
If OBSTRUCTIONS is False, then the ray begins at the exit
point, assuring no objects contained within the holodeck
section will be visible.  If OBSTRUCTIONS is left unset, each
ray will have its origin at some random point between the
entry and exit points, so it will sometimes intersect an
interior object in its path, and sometimes not.

This ability to control the visibility of interior objects may
seem perverse, but it is actually quite useful.  If the
holodeck section encloses an object to be viewed from the
outside, then setting OBSTRUCTIONS to True gives us what
we want.  If we plan to be inside each section and render
local geometry with an alternate technique, then setting
OBSTRUCTIONS to False is clearly the right thing to do.  If
we plan to view our holodeck from the inside, but we are
not certain that we have excluded all relevant geometry
from each section, then leaving OBSTRUCTIONS unset is
most reasonable.  That way, we will be able to see interior
objects, but we will also be able to see past them, even if
they block large areas.  Starting a ray at a random distance
means it will be more likely to intersect an object near the
exit wall, which is what we want to see from an interior
viewpoint.  In effect, leaving this variable unset gives a soft
boundary to each holodeck section.  Resulting occlusion
discrepancies will be cleared up in the display algorithms,
discussed in section 2.4.3.

Another user parameter controls not what a ray sees, but
how rtrace evaluates distance.  If the VDISTANCE parameter
is set to False, then rtrace computes the distance to the first
object that is intersected.  If VDISTANCE is set to True, then
rtrace computes the virtual distance for each ray.  In the
case of diffuse and curved surfaces, this is the same as the
first intersection distance.  However, when there is a flat,
specular surface, such as a mirror or a pane of glass, then
rtrace returns the distance to the object reflected in or
visible through the specular surface.  When this intersection
point is later reprojected for display, it may give a sharper
image than the first intersection, especially if the section
grid is coarse and the program has little time to converge.
The disadvantage of using virtual distance is that edges of
specular objects may break up, and some reprojections may
not be exact, especially if the specular object has a lot of
refraction.  (We show some effects of these user parameters
in the Results section.)

Thanks to the simplicity of our queuing model and the
nominal demands we place on our ray evaluation, it is
straightforward to adapt this system to different compu-
tation environments.  We could substitute another ray
tracing system for Radiance, or use a distributed network of
machines to perform our calculations rather than a
multiprocessor host.  Alternatively, we could employ a

massively parallel computer, and communicate over a
single network connection.

2.4 The Display Process

The display process is the most important component of our
system, because it is responsible for what the user sees and
how the user directs the simulation.  Our overall goal is to
provide an interactive walk-through of a realistic environ-
ment.  For its part, the display process must do the
following:
• Accept user input and view manipulation,
• Tell the holodeck server which beams to compute, and
• Create a reasonable image from returned beam

samples.

Of these three tasks, only the second one is unaffected by
the choice of graphics hardware.  User input and view
manipulation vary with the input devices available and the
interaction model; a head-mounted display is different from
a CAVE, which is different from a monitor with a spaceball
or a mouse.  Likewise, the visual representation will change
from one output device to the next, especially if a stereo-
scopic display is available.  One of the advantages of our
system design is the great flexibility it offers in selecting
the ray calculation and display methods.

To simplify our discussion, we will only examine the two
common graphics configurations we have implemented:  a
color X11 display and an OpenGL platform, both with a
standard mouse and keyboard.  The input and view manipu-
lation for these two drivers is identical, so we only discuss
the image representations separately.

2.4.1 Input Model

The mouse is used to direct view movement, and the
keyboard is used to enter single-letter commands in the
display window.  The process starts with a default view in
the center of the first holodeck section (or outside looking
toward the first section if OBSTRUCTIONS is True).  From
there, the user usually rotates the view and starts heading in
some direction.  In forward motion, the view advances 10%
closer per frame to whatever object is under the mouse
cursor as long as the button is held down.  The view direc-
tion is held constant, and the view center is adjusted so
whatever started out under the cursor will stay there as the
view moves.  This is extremely helpful in minimizing wild,
unintentional view motions as the reference object under
the cursor changes from frame to frame.  Similarly, backing
away from or orbiting an object keeps the point under the
cursor fixed.  Only view rotation, which keeps the view
origin where it is, avoids the need for any visible geometry.

Even if no geometry is visible, the display driver will draw
each of the holodeck section grids during view motion to
keep the user oriented.  Often, only part of a new view will
be drawn, since the driver does not request new rays from
the server until motion has stopped.  A cache of ray values
is kept in the driver’s memory to reduce latency and allow
movement outside the current view.  This cache is dis-
cussed further in the subsection on Image Representation.
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Two commands are provided to facilitate interactive scene
changes.  A command is provided to kill the rtrace process
and another to restart it after some change to the scene
description.  The changes dissolve-fade into the displayed
image as new ray values are entered into the holodeck data
structure.  A third command is provided to clear the
holodeck contents.  This is needed for substantial scene
changes in which ray values change radically.

2.4.2 Beam Selection

Each time a view is selected, the display driver must inform
the holodeck server which beams it needs in order to fill in
the image.  It is then the server’s responsibility to get as
many rays to the display driver as quickly as possible so we
can display a reasonable image.  The server does this by
first sending whatever rays it happens to have in memory,
followed by whatever rays it can find on disk, followed by
whatever new rays are calculated by the ray tracing process.
This final stage continues until the screen resolution is
achieved, with frequent updates along the way.

Figure 4.  A plan view of a holodeck section, showing how
we determine beams that contribute to a specific view.  For
each cell in our view volume (gray), we identify beams by
drawing pyramids through voxels to find the opposite cells.

The beams we need for our display are the ones that pass
close by our view point, whose rays are directed inside our
view volume.  To identify these beams, we calculate which
cells are intersected by rays passing through the grid cells
in our view and the eight closest voxels around our view-
point.  Figure 4 shows a plan view of an example holodeck
section with a user’s view volume.  We draw a pyramid
from each visible cell backwards through each voxel, and
determine which cells it encloses on the opposite side.  All
beams between the grid cells in the view volume and their
opposing partners will potentially contribute to this view.

To minimize the cost of recomputing the beam list for small
view changes, we compute it in eight parts, one for each
neighborhood voxel.  For small changes in the view posi-
tion, we only have to compute beams for whatever new
voxels are added to our neighbor list, dropping ones that
fall off.  If a movement doesn’t cross a voxel center plane,
we won’t have to change voxel lists at all.

For small changes in the view direction, we only need to
recompute beams for cells near the image borders.  In our
implementation, we make a list of cells visible in the
previous view and cells visible in the new view for each

voxel shared by the two views.  We then compute the beams
that were in the last view but not in this one, and take them
off our list.  Beams that are in this view but weren’t in the
last one are added.  The rest we can leave alone.  If fewer
than half of the old cells are shared by the new view, it’s
faster to just clear the voxel list and compute all the new
cell beams.

What happens when our view is very close to one of the
section walls, or outside the holodeck section altogether?
In general, we should be able to see anywhere our view rays
penetrate the holodeck, no matter where our vantage point
is.  Even when we look away from the holodeck, there will
be some rays that can be applied towards our view.
Figure 5 shows a few examples.  View A, though it is
directed away from the holodeck section, can still pick up
beam samples that happen to be leaving the holodeck in its
direction.  View B is looking towards the section, and poses
no particular problem.  View C, however, will only form a
partial image if we are working from this one section, since
some ray directions do not intersect the holodeck at all.  To
compute the beams for exterior view points like A, B and C,
we extend the algorithm shown in Figure 4 by allowing
voxels to exist outside a holodeck section.  In our
implementation, we reduce the number of neighborhood
voxels to four, two or one, depending on which section wall
planes contain the viewpoint.  This reduces the number of
beam computations that add little information to the view.
In general, a holodeck consists of multiple sections, and we
can choose whichever section is closest to get our beams.
In some cases, we pull beams from more than one section
for a view that lies between sections.

A

B

C

Figure 5.  Three possible views of a holodeck section.  One
example ray is shown for each view.

2.4.3 Image Representation

Once it has informed the holodeck server which beams it
wants, the display process converts the returned ray sam-
ples into a displayed image.  Drawing the rays as points
doesn’t work because there aren’t enough of them to cover
more than a fraction of the screen’s pixels.  A progressive
Delaunay triangulation would work, but would be time-
consuming if applied to every ray.  Rather than using a
more sophisticated technique such as a constrained
Delaunay triangulation with textured regions [Pighin97],
we decided to start with a simple quadtree representation.
The advantage of a quadtree is that it’s easy and quick to
update, and gives us a region to draw for each ray sample.
We aren’t forced to draw rectangles, but are free to choose
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whatever representation works best on our display.  Under
X11, we decided to draw rectangles.  Under OpenGL, we
draw Dirichlet domains (a.k.a. Voronoi polygons).  We will
discuss these two choices and their implications at the end
of this section.

Because the holodeck’s ray samples pass near our view
point rather than through it, we need to reproject the
intersection points to get the correct image position for each
ray.  This is a straightforward matrix transformation on the
world intersection point, computed from the values given in
Table 1.  The image quadtree is built by subdividing a
quadrant whenever it contains more than one sample point,
down to some minimum node size, which is usually a few
pixels on a side.  At terminal nodes, we only replace a leaf
sample if the new ray intersection is in front of the old one.
If two samples are about the same distance, we choose the
ray that passes closest to our view point.  In no case will we
use a sample that passes beyond some maximum angle from
our view point, which is 20° in our implementation.  Even
so, we may still have occlusion errors due to ray samples
that pass further from our viewpoint than from some
occluding object.  Since our methods for reducing such
artifacts depend on our drawing technique, we will discuss
them at the end of this section, also.

The ray colors handed to us by the server are floating point,
world radiance units.  Since our display is not capable of
reproducing the dynamic range of a real environment, we
need to map these values to lie within our CRT monitor’s
gamut.  To accomplish this, we use a fast integer imple-
mentation of the visibility matching tone reproduction
operator developed by Larson et al [Larson97].  We keep a
record of image brightnesses (log luminances), and use
them to compute a new brightness mapping each time the
screen is redrawn.  (The user may also force a redraw at
any time.)  Our tone mapping has two variations.  The first
variation computes the optimal colors for display, so as to
maximize visible areas on the screen by minimizing con-
trast compression of large regions.  The second variation
attempts to reproduce human visual sensitivity by adjusting
both contrast and color visibility according to the eye’s
local adaptation.  The latter technique produces dim,
weakly colored simulations of dark environments, which
shows what would be visible to a human observer in the
real world.  For well-lit environments, the two techniques
produce similar results.  In fact, the human contrast algo-
rithm may actually produce brighter, more visible displays
for outdoor simulations, since the eye’s sensitivity is greater
outdoors than under typical CRT viewing conditions.

To minimize delays in redrawing the screen, we keep a
cache of recently sent rays in a list, which is referred to by
leaf nodes in our quadtree.  During view movement, we
rebuild our quadtree at reduced resolution from this cache
of values, rather than asking the server to resend everything
over the interprocess connection.  We also draw the section
grids over the displayed image, for better feedback and as a
reference frame when the cache has nothing to show for a
particular view.  Once the new view is selected by releasing
the mouse, we draw a full resolution quadtree of whatever
leaves we have, and ask the server to send over rays for

beams that have changed since the previous view. For small
view changes, selective updating usually results in consid-
erable savings. This is similar to the frameless rendering
idea proposed by Bishop et al [Bishop94].

We can also minimize processing time by storing the exact
information we need for each leaf.  The stored leaf samples
and their byte requirements are shown in Table 2.  The
world coordinate takes the most space, but encoding it and
decoding it would add too much to our redisplay time.  We
can, however, efficiently encode the world direction, which
we need for determining the best ray for each terminal
node.  We do this by encoding the two smaller vector
components in 14 bits each, plus the sign bit for the largest
component.  (One bit of 32 is wasted.)  The encoded result
allows us to compare vector angles with a tolerance of about
15 seconds of arc.  (A typical pixel covers over 100 arc
seconds.)

Stored value Size
world coordinate 12 bytes
encoded world direction 4 bytes
encoded world brightness 2 bytes
display chromaticity 3 bytes
current tone-mapped color 3 bytes

Table 2.  Recorded values for each leaf in the display
quadtree.

The storage requirement for our quadtree is 24 bytes per
leaf, plus 4 bytes for each node index, which is multiplied
by the allocated cache size.  This is usually equal to the
display resolution divided by three or four, since the target
resolution is generally smaller than the display resolution,
and we don’t need to keep much more than one screenful of
cached leaves around.  For a 1280×1024 display, this adds
up to about 16 Mbytes of main memory needed by the
display process.

As we mentioned before, the actual image representation of
our quadtree is different in our two driver implementations.
Under X11, it is easiest to draw rectangles, whereas
OpenGL allows us to be a little more creative.  We discuss
the ramifications in the following two subsections.

2.4.3.1 2D driver (X11)

Since the display model in X11 is strictly two-dimensional,
it is easiest to just draw our quadtree leaves as rectangles.
Unfortunately, we cannot rely on every leaf node in the
quadtree to have a corresponding value.  Since our ray
samples are randomly distributed over the image, some
quadtree nodes may contain only two or three values.  This
situation is illustrated in Figure 6.

Besides filling in missing values, we also want to reduce
visible occlusion errors in our displayed image, which can
occur when a ray passes close by an object, but not as close
by our view point.  Figure 7 shows one such example.  To
minimize visible artifacts, we look at all leaf nodes at each
quadtree level.  If any leaf is further than some fraction of
the closest leaf’s distance, we do not use that value, but
treat it instead as an empty quadrant.  In our tests, we found
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a depth epsilon of 5% to work reasonably well.  Because the
closer leaf values tend to be in the majority at nodes where
occlusion errors occur, this technique reduces the severity
of artifacts.

Figure 6.  A random sampling pattern stored in a quadtree
with no more than one sample per leaf node.

Figure 7.  Occlusion error caused by using a ray not
passing through the view point.  The dotted line shows the
intersected world coordinate is not actually visible from this
position.

How do we fill in missing quadrants due to random sam-
pling and occlusion culling?  As we draw our valid leaves,
we keep a sum of their values.  For any subtrees we draw,
we get the returned average and add it to our sum.  Then,
we go back and fill in any missing quadrants with the
averaged color.  In almost all cases, this produces a
satisfactory image.

Figure 8a shows a low-resolution image produced without
gap filling or occlusion detection.  Occlusion errors can be
seen as white pixels near the podium silhouette.  Figure 8b
shows the same image drawn by our X11 driver.  Note how
there are still some occlusion errors visible at this resolu-
tion.  Using our reduction technique, roughly 25% of the
occlusion errors present in the quadtree are actually drawn.

Figure 8a.  An image drawn of the quadtree leaves that
contain some low-resolution sample values, without
considering occlusion.

Figure 8b.  An image of the same data produced by our
X11 driver, with gap-filling and occlusion error reduction.

2.4.3.2 Depth-buffered triangles (OpenGL)

Using 3D rendering hardware, we can display a better
representation of our quadtree.  Rather than drawing the
quadrants our samples just happened to land in, we can
draw Dirichlet domains around each computed point.  A
Dirichlet domain, also known as a Voronoi polygon, is the
area on a plane that is closer to a particular point than it is
to any other point.  As a piecewise constant approximation,
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the Dirichlet map (i.e., Voronoi diagram) is the least biased
representation possible.

Creating a progressive Dirichlet map is as simple as draw-
ing a flat-shaded, depth-buffered cone for every sample
point [Haeberli90].  Each cone is drawn as seen looking
from directly above, with the apex at the sample point and
the base past the edges of the image.  If it were fully shaded
with shadows from some angled light source, we would see
something much like the range of very round mountains
shown in Figure 9.  Since we draw each cone flat-shaded,
what we see instead is the Dirichlet domain around each
sample.

Figure 9.  Drawing cones as seen from above results in a
Dirichlet domain around each apex [Haeberli90].

Drawing cones the size of the screen for every sample point
is slow and wasteful.  Since we know the rough sample
coverage from our quadtree, we can limit each cone radius
to the width of its corresponding quadrant.  The amount of
overlap will be minimal, but it is still rather expensive to
render high-quality cones.  We could precompute a depth
map for the cones and render using the stencil buffer, but it
is cheaper and faster to approximate each cone as a triangle
fan and render them that way.  In our implementation, we
vary the resolution of the triangle fan depending on the
target cone radius, such that a full-screen cone is drawn
with 32 base vertices, and the smallest cone is drawn as a
four-sided pyramid.

Figure 10a shows the same sample data as before, rendered
with the simple cone-drawing algorithm just described.
Note that there are some missing pixels, though not nearly
as many as the unfilled quadtree in Figure 8a.  However,
the original occlusion errors are back.

Figure 10a.  Our scene samples rendered with cones to
create Dirichlet domains.

Figure 10b.  The same samples rendered using variable
cone heights and background filling.

We could employ the same algorithm used by the X11
driver to reduce the occlusion artifacts, but there is a better
way.  Instead of drawing all the cones at the same height to
create true Dirichlet domains, we can vary the cone height
based on the sample depth value.  By varying the heights as
little as 6% over the range of sample depths, we can elimi-
nate the vast majority of occlusion errors.  We do introduce
a new artifact, however, which is a slight growth in some
object silhouettes, but this is visually much less objection-
able than disintegrating edges.  Figure 10b shows our
samples rendered with this algorithm, and with empty
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quadtree leaves filled in using average-color, minimum-
height cones.  Silhouette growth is evident around the
podium, but overall this is a very good impression of our
scene.

2.5 Process Coordination

Good coordination between the holodeck server, the ray
calculation, and the display process is needed to keep every-
thing running smoothly.  We could easily deadlock by
waiting for a process that is waiting for us.  To insure
against this, we use the following process model:
• The server waits for ray values to come back from

rtrace, and checks the display process for any requests
using a non-blocking read once new rays have been
delivered.  If there are no further beams to compute,
the server waits for input from the display process.

• The display process waits for input from the holodeck
server and the user with equal priority, updating the
image before each call to select.

• The display process is permitted to send short, inter-
mittent requests to the server.  If the display process
has a long request to make, it first puts in a request for
the server’s attention.  While waiting for an acknowl-
edgment, the display process continues to load packets
sent by the server.

• The display process may request a shut down, but the
server makes the final decision.  Once the display
process receives a order to shut down, it must quit
immediately.

The above rules are modified if there is no calculation
process or no display process.  If there is no ray calculation,
the server waits on the display process alone, sending it
whatever relevant rays it finds in the holodeck file.  If there
is no display process, the server creates its own list based on
beam volumes.

While the user is changing views with the mouse, the server
process may stall because its socket to the display backs up.
This isn’t a problem, though, because the display process
will get back to reading from the server once motion has
ceased, and there may be no need for the old beams in the
new view, anyway.

A typical interactive calculation with all three logical
processes is detailed in the Appendix.

3. Results

Figure 11 shows the grid for an exterior holodeck section
surrounding a 3-dimensional chess game.  What is enclosed
by the section grid will be visible from the outside, since the
OBSTRUCTIONS variable has been set to True.  Figure 12a
shows a view of the holodeck generated from scratch on a
single processor SGI O2 in about ten seconds.  Figure 12b
shows the same view after a minute.

Figure 13 shows multiple interior section grids in a pro-
posed redesign of the Office of Environmental Policy at the
White House.  Note how the section walls intersect geome-
try, and extend into the hallway.  By leaving the
OBSTRUCTIONS variable unset, the calculation will begin

each ray at some random point within a section.  In some
cases, the ray may intersect interior geometry, but since it is
mostly transparent (i.e., glass) or near the section bounda-
ries, this will not interfere much with our visibility.  In the
hallway itself, the user will move from one office section to
the next, possibly passing between sections.  Because we
can draw from sections behind as well as in front of us, this
works fine.  Figure 14 shows a very impressionist image
taken from the hallway, where samples are being retrieved
from a holodeck section lying just behind our view point.
Because this scene contains specular surfaces and an
indirect lighting system, it would be extremely difficult to
render it in hardware, and although the geometry is not
very solid at this early stage, the lighting and overall feel of
the space are beginning to emerge.

Figure 15a shows a terminal in the end office with a poor
task lighting arrangement.  We can’t really tell how bad it
is, though, until we move our view point to that shown in
Figure 15b, where the specular reflection becomes more
visible.  For a rotation this large (about 40°), our display
process ignores its cached samples and uses only new ones
sent by the holodeck server.  For smaller moves, the display
process would gradually update the image with new rays
sent by the server, and the view-dependent highlight would
dissolve out of its old position and into its new one.

Most of the figures shown in this paper were generated on a
single-processor workstation with low-end graphics.  Using
a multiprocessor platform with faster graphics hardware,
we can achieve better interactivity in more challenging
environments.  For example, we employed a 16-processor
Onyx to compute a daytime holodeck of the same OEP
office space.  To resolve the complicated interreflections,
we ran 14 copies of rtrace for 20 hours to calculate about
83 million view rays, which went into an 820 Mbyte
holodeck file.  In all, over 1.4 billion rays were traced to
compute the light field, and 235 thousand indirect
irradiance values were recorded [Ward88] [Ward94].
Viewing the holodeck interactively, our server accessed an
average of 41,000 view rays per second from the holodeck
for each new view, and computed 1200 rays/second
continuously from its 14 rtrace processes.  In both batch
and interactive mode, CPU utilization was over 99% for
each running copy of rtrace.  In interactive mode, the other
processors got light duty from the holodeck server and
display process, except during and immediately after view
changes, when the display process was quite busy.

Figure 16 shows an interactive sequence taken from a walk-
through of the daylight OEP office.  Figure 16a uses
samples taken from the precomputed holodeck.  Figure 16b
was captured during movement to a new view.  Figure 16c
is what we see immediately after releasing the mouse; since
the view has rotated more than 20°, the display process
ignores most of its cache.  Half a second later, the server
has retrieved some better samples from the holodeck file
and we see what is shown in Figure 16d.

What happens when we take a vantage point that is outside
all sections, with substantial portions of the view intersect-
ing no section at all?  Figure 17 shows a holodeck render-
ing of a cabin model, where we’ve moved our position so
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we have both the living room’s section and the bedroom’s
section below and in front of us.  What we see are the rays
that begin at the top or outside of each section and intersect
the wall or floor below.  Since the sections are within the
wall and ceiling boundaries, that geometry is invisible,
giving us a kind of X-ray vision.  The geometry between
sections is also invisible, so we see nothing of the wall and
doorway that lie between the two rooms.  The bathroom’s
section, which lies behind the bedroom, is not visible in this
rendering, because we are not close enough to it for the
display process to consider it interesting.

Figure 18a shows a low resolution view of the bathroom
mirror with the VDISTANCE variable set to False.  Because
the ray distance to the mirror itself is returned by rtrace,
our display reprojects points on the mirror, regardless of
what they reflect.  By setting VDISTANCE to True, the
distance to reflected objects is returned by rtrace instead,
and we get the image shown in Figure 18b.  Although the
reflections are now sharp, we see some other peculiarities
around the mirror frame.  These are occlusion errors due to
the discrepancy between the mirror frame’s distance and
the reported distance of the reflection inside, which we
didn’t see in Figure 18a because the mirror and the frame
were reported as having about the same distance.  Both of
these images would eventually converge, and in the end
would resemble each other closely.  The reflection with
VDISTANCE set to False would never be quite as sharp,
however, which is why we set it to True in this environ-
ment.  In cases where the reflecting objects are very small,
their breakup can be quite annoying, which is one reason
we might want to set VDISTANCE to False.

Figure 11.  A grid for a holodeck section that is meant to
be viewed from the exterior.

Figure 12a.  An interactive rendering of the chess scene
after 10 seconds on an SGI O2.

Figure 12b.  The same view after 1 minute.

Figure 13.  An overview of the OEP office space with
multiple holodeck sections.
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Figure 14.  A very low resolution view of the OEP hallway,
taken from between two sections.

Figure 15a.  A close-up of a workspace terminal with poor
task lighting.

Figure 15b.  From another view, we can better see the
problem with specular reflection off the screen.

Figure 16a.  A daylight version of the space precomputed
in 20 hours on 14 Onyx processors.

Figure 16b.  The low-resolution display and section grid
drawn for feedback during mouse-controlled view
movement.

Figure 16c.  The image displayed immediately after
releasing the mouse.  We have moved so much that the
display cache contains few useful samples.

Figure 16d.  The same view after half a second, during
which time the server has retrieved some more relevant
samples from the holodeck file.
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Figure 17.  A view from above and between two holodeck
sections, with invisible regions.

Figure 18a.  A low resolution rendering of a bathroom
mirror with VDISTANCE=False, showing the resulting lack
of definition in the reflection.

Figure 18b.  By setting VDISTANCE=True, we get a sharper
image in our mirror, but the mirror’s edges begin to break
up a bit.

4. Conclusions

In this paper, we have presented a new method for demand-
driven rendering of a 4-dimensional light field, which we
store in a dynamic holodeck data structure that facilitates
the rapid generation of new views.  Compared to other
image-based rendering techniques, our approach avoids the
need for any preprocessing or development step, and

permits rays to be calculated and stored at variable densi-
ties.  Since rays are bundled on disk and cached in memory,
memory size does not limit a light field’s size or resolution,
though we can take advantage of more memory when
available.

Unlike most IBR methods, we expect to be given the world
intersection point and radiance value for each sample,
which is why we employ a physically-based ray tracing
calculation to generate our data.  With this information, we
can produce more accurate displays that better represent
what a person would actually see in a real scene.  Using a
dynamic implementation of a visibility preserving tone
mapping function, we display our world radiances in a way
that accounts for local adaptation as well as human color
and contrast sensitivity.  This correspondence is critical for
reproducing visibility and visual comfort in design and
training environments.  Without it, there is no way to tell if
the objects visible on the screen would be visible in real life,
or vice versa.

Our present resampling techniques for displaying ray
values are rather crude.  It might be better to use a piece-
wise linear representation, such as Gouraud-shaded trian-
gles, rather than our current piecewise constant
approximation.  However, a disadvantage to a “properly
filtered” low-resolution image being displayed on a high-
resolution monitor is that the human eye needs high
frequency data to stay focused.  An ideal solution would use
pupil-tracking to follow the user’s view center, keeping
high frequency data in the foveal region, and allowing the
rest of the image resolution to fall off according to the off-
axis acuity function.

There are many avenues open for future exploration of
holodeck rendering.  The near future might include writing
display drivers for stereo monitors, head-mounted displays,
and CAVEs [Cruz-Neira93], trying the ray tracing engine
out on a massively-parallel processor such as the Cray T3E,
or using measurements such as stereo range data and
radiance maps [Debevec96] [Debevec97] to create holodeck
backgrounds for virtual worlds.  There are also a few
obvious optimizations we have not yet tried.  One is to
prefetch beams based on a user’s current trajectory, similar
to [Funkhouser93].  Another is to perform adaptive sam-
pling based on beam variance, though doing this right is
tricky [Kirk91].  A third is to avoid resampling distant
geometry in parallel beams, since their radiance function
varies only with angle, not holodeck position.  Also, we
might investigate quick ways to “compand” beams stored
on disk.  Finally, we would like to explore new ways of
representing holographic information, such as time-varying
data for animation, and material data to facilitate mutual
illumination of local objects.
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6. Appendix

The startup sequence for a typical interactive session with
the three logical processes, holodeck server, ray calculation
and display, proceeds as follows:
1. The user starts the program with two rtrace processes

and an X11 driver.
2. The holodeck server opens the existing holodeck, opens

the display driver, and starts two rtrace processes.
3. The first rtrace process loads all of its scene files and

octree and initializes its data structure, then forks itself.
4. The second rtrace process attaches its i/o descriptors to

the child of the first rtrace, so the processes effectively
share memory on a copy-on-write basis.

5. The display driver gets the holodeck section grids from
the server, and sets up a default view.  It computes the
relevant beams for this view, and prepares a long
request for the server.

6. The server, having no beams to work on yet, has been
waiting on the display process for input.

7. The display process requests the servers attention, and
the server sends an acknowledgment.

8. The display process gets the acknowledgment, and
sends its list of beams.

9. The server gets the list of beams, and checks to see
what it can satisfy from the holodeck file.  It sorts the
beams in file order to minimize disk access time, and
sends rays to the display process as it loads them from
the file into memory.

10. The display process loads rays from the server and puts
them into its quadtree, updating the displayed image
every 50,000 samples (if there are that many).

11. Once the server has exhausted the supply in the
holodeck file, it flushes the data to the display process
and assigns beams to rtrace on a least-filled/most-
requested priority basis.

12. After it has read all the beams sent immediately by the
server, the display process updates the displayed image
and calls select to wait for user input or more server
packets.
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13. The server, meanwhile, has called select to wait for one
of the rtrace processes to send it some results.

14. One of the rtrace processes finishes a beam packet and
flushes it to the server.

15. The server stores the beam packet in memory, freeing
memory as necessary by writing beams to disk using an
LRU scheme.

16. The server flushes the computed samples on to the
display process and checks it for input.

17. If there is no request from the display, the server
queues a new beam packet to rtrace and calls select
again.

The server continues in this manner, interrupting its tend-
ing of rtrace only to fill display requests and manage
holodeck file caching.  The display process continues
handling input from the server and the user and updating
the displayed image.  When the display process makes a
shut down request, the server flushes its queue and closes
rtrace, then flushes data to the holodeck file and sends a
final shut down directive to the display.  It then waits for
the display process to finish before exiting itself.


