prch2rad (1 - convert Architrion text file to RADIANCE description
- do a set of batch graphs to a metafile

- calculator

- index counter

- compute good ambient value for a rad input file

- convert between metafile formats

- compute illuminance and daylight factor on workplane
- do a set of graphs to a dumb terminal

- evaluate expressions

- make a false color RADIANCE picture

- locate glare sources in a RADIANCE scene

- do computations on a graph file.

- generate a RADIANCE description of venetian blinds

- generate a RADIANCE description of a box
genclock (1) - generate a RADIANCE description of a clock
genprism (1) - generate a RADIANCE description of a prism
genrev (1) - generate a RADIANCE description of surface of revolution
gensky (1) - generate a RADIANCE description of the sky
gensurf (1) - generate a RADIANCE or Wavefront description of a curved surface
genworm (1) - generate a RADIANCE description of a functional worm
getbbox (1) - compute bounding box for RADIANCE scene
getinfo (1) - get header information from a RADIANCE file

- perform glare and visual comfort calculations
- calculate glare index
- render a RADIANCE scene using OpenGL

glarendx (1

histo (1) - compute 1l-dimensional histogram of N data columns
ies2rad (1) - convert IES luminaire data to RADIANCE description
Lgraph (1) - interactive graphing program

imagew (1) - output metafile to Apple Imagewriter

impress (1 - convert metafile to imPress language for imagen
- laminate lines of multiple files

- compute spectral radiance for diffuse emitter

Lookamb (1 - examine ambient file values
acbethcal (1 - compute color compensation based on measured Macbeth chart
EetaZtga (1) - convert metafile to Targa image format
gf2meta (1) - convert Materials and Geometry Format file to Metafile graphics
ngZrod (1) - convert Materials and Geometry Format file to RADIANCE description
killum (1) - compute illum sources for a RADIANCE scene
mx80 (1)) - output metafile to Epson mx-80
heat (1) - neaten up output columns
hormpat (1) - normalize RADIANCE pictures for use as patterns.
hormtiff (1) - tone-map and convert RADIANCE picture or SGILOG TIFF to RGB TIFF
bbj2mesh (1) - create a compiled RADIANCE mesh file from Wavefront .0BJ input
bbj2rad (1) - convert Wavefront .obj file to RADIANCE description
bbjline (1) - create metafile line drawings of RADIANCE object(s)
bbjview (1) - view RADIANCE object(s)
bconv (1) - create an octree from a RADIANCE scene description
bcomb (1) - combine RADIANCE pictures.
bcompos (1 - composite RADIANCE pictures.
bcond (1 - condition a RADIANCE picture for output
bdfblur (1) - generate views for depth-of-field blurring
bexpand (1) - expand requested commands in metafile
bextrem (1) - find minimum and maximum values in RADIANCE picture
bfilt (1) - filter a RADIANCE picture
bflip (1) - flip a RADIANCE picture.
bhisto (1 - compute a luminance histogram from one or more RADIANCE pictures
;TFFEFE-E%j - interpolate/extrapolate view from pictures
blotin (1) - convert plot(5) to metafile(5) primitives
bmblur (1) - generate views for camera motion blurring
brotate (1] - rotate a RADIANCE picture.

ra_tiff (1)
ra_xyze (1)

raddepend (1

ranimate (1)
animove (1)

calc (1
eplmarks (1

rhcopy (1)
hinfo (1)

piece (1)
trace (1)
Fview (1)
c4014 (1)
tabfunc (1)
thf2rad (1)

tmesh2rad (1

ttyimage (1)
vgaimage (1)
vwrays (1)

bwright (1)
k11meta (1)

produce a RADIANCE picture from text.

convert metafile to PostScript

sort primitives in metafile as requested

convert RADIANCE picture to/from alternate formats

convert RADIANCE picture to/from Barneyscan image

convert RADIANCE picture to Compuserve GIF

convert Radiance pictures to Macintosh PICT files

convert RADIANCE picture to/from a Poskanzer Portable Pixmap
convert RADIANCE picture to/from pixrect rasterfile
convert RADIANCE picture to/from 24-bit rasterfile

convert RADIANCE picture to a PostScript file

convert between different RADIANCE picture types

convert RADIANCE picture to/from Targa 16 or 24-bit image file
convert RADIANCE picture to/from Targa 8-bit image file
convert RADIANCE picture to/from a TIFF color or greyscale image
convert between RADIANCE RGBE and XYZE formats

render a RADIANCE scene

convert RADIANCE scene description to Materials and Geometry Format
find RADIANCE scene dependencies

compute a RADIANCE animation

render a RADIANCE animation with motion

record calculator

replace triangular markers in a RADIANCE scene description
copy ray information into a holodeck

print information about a RADIANCE holodeck file
generate/view a RADIANCE holodeck

optimize beam locations in holodeck file

render a RADIANCE picture from a holodeck file

generate a RADIANCE picture

render pieces of a RADIANCE picture

trace rays in RADIANCE scene

generate RADIANCE images interactively

output metafile to Tektronix t4@014 graphics terminal
convert table to functions for rcalc, etc.

convert GDS things file to RADIANCE description

convert a triangular mesh to a RADIANCE scene description
sum up columns

graphical user interface to Radiance rad(1l) program
RADIANCE driver for dumb ASCII terminal

RADIANCE picture display program for VGA

compute rays for a given picture or view

normalize a RADIANCE view, shift it to the right

output metafile graphics to X11

transform a RADIANCE scene description

dislpay glare sources under X11

RADIANCE driver for X window system

interactively show rays traced on RADIANCE image under X11
simplified interface to metafile(5)

graphics command interface, similar to plot(5)

ARCH2RAD(1) ARCH2RAD(1)

NAME
arch2rad - convert Architrion text file to RADIANCE description

SYNOPSIS
arch2rad [-n][-m mapfile] [input]

DESCRIPTION
Arch2rad converts an Architrion text file to a RADIANCE scene description. The material names for the
surfaces will assigned based on the default mapping or the mapping rules file given in the —m option. A
mapping file contains a list of materials followed by the conditions a surface must satisfy in order to have
that material.

For example, if we wanted all surfaces for blocks with Refld "thingy" and Color 152 to use the material
"wood", and all other surfaces to use the material "default"”, we would create the following mapping file:

default ;
wood (Refld "thingy") (Color 152) ;

All surfaces would satisfy the first set of conditions (which is empty), but only the surfaces in blocks with
Refld "thingy" and Color 152 would satisfy the second set of conditions.

Each rule can have up to one condition per qualifier, and different translators use different qualifiers. In
arch2rad, the valid qualifiers are Layer, Color, Face and Refld. A condition is either a single value for a
specific attribute, or an integer range of values. (Integer ranges are specified in brackets and separated by a
colon, eg. [-15:27], and are always inclusive.) A semicolon is used to indicate the end of a rule, which can
extend over several lines if necessary.

The semantics of the rule are such that "and" is the implied conjunction between conditions. Thus, it makes
no sense to have more than one condition in a rule for a given qualifier. If the user wants the same material
to be used for surfaces that satisfy different conditions, they simply add more rules. For example, if the
user also wanted surfaces in blocks with Refld "yohey" with Colors between 50 and 100 to use "wood",
they would add the following rule to the end of the example above:

wood (Color [50:100]) (Refld "yohey") ;

Note that the order of conditions in a rule is irrelevant. However, the order of rules is very important, since
the last rule satisfied determines which material a surface is assigned.

By convention, the identifier "void" is used to delete unwanted surfaces. A surfaces is also deleted if it fails
to match any rule. Void is used in a rule as any other material, but it has the effect of excluding all match-
ing surfaces from the translator output. For example, the following mapping would delete all surfaces in
the Layer 2 except those with the color "beige", to which it would assign the material "beige_cloth", and all
other surfaces would be "tacky":

tacky ;
void (Layer 2) ;
beige_cloth (Layer 2) (Color "beige") ;

If neither the —m nor the —n options are not used, arch2rad uses the default mapping file
"fusr/local/lib/ray/lib/arch.map”. This file simply assigns materials based on color, using the identifiers
"c0" through "c255". Appropriate materials for these identifiers are contained in
"fusr/local/lib/ray/lib/arch.mat".

The —n option may be used to produce a list of qualifiers from which to construct a mapping for the given
Architrion file. If the —m option is used also, only those blocks matched in the mapping file will be added
to the qualifier list.

RADIANCE 11/15/93 1

ARCH2RAD(1) ARCH2RAD(1)

DETAILS

Architrion blocks are divided into about 6 polygons. The reference, opposite and end faces must all be
quadrilaterals (ie. four-sided polygons), though one or more faces may disappear in certain degenerate
cases. The bottom face will usually be a quadrilateral, though it may be written out as two triangles if the
face is non-planar or one triangle if there is a degenerate side. The top face is treated the same as the bot-
tom face.

Openings are currently handled using the antimatter material type. An antimatter material called "opening"
is defined that "clips" all faces for the current block, and patches the edges of the hole with the material
defined for the face "sill". 1f no rule is given specifically for the sill face, then the most specific material (ie.
the material in the latest rule) for this block is used. An antimatter opening will not function properly if
there is another surface intersecting it, or rendering is attempted from within the opening. Overlapping
openings or openings with shared boundaries will also fail. There is currently no support of Architrion
"frame" libraries.

Naming of the output faces is based on layer number, reference id and output block number (sequential
from 1 to the total number of output blocks). If there is no reference id name, the layer name is used (if
available) instead of the layer number. If there is a reference id number but no name, that is added as well.
Names are truncated to the first 12 characters, so the ends of long names may be lost. Also, spaces in
names are replaced by underscores (’_’). Finally, the face id is added to the end of the block name for each
output polygon. An example identifier for a polygon is:

13.window_overh.3155.ref

This would be the reference face of output block number 3155, reference id name "window overhangs" in
layer number 3.

EXAMPLE

FILES

To create a qualifier list for building.txt:
arch2rad -n building.txt > building.qual
To translate building.txt into a RADIANCE file using the mapping building.map:
arch2rad -m building.map building.txt > building.rad
To create an octree directly from an Architrion file using the default mapping and materials:

oconv source.rad /usr/local/lib/ray/lib/arch.mat *\!arch2rad building.txt” > building.oct

Jusr/local/lib/ray/lib/arch.map /usr/local/lib/ray/lib/arch.mat

AUTHOR

Greg Ward

SEE ALSO

ies2rad(1), oconv(1), thf2rad(1), xform(1)

RADIANCE 11/15/93 2

BGRAPH(1) BGRAPH(1)

NAME
bgraph - do a set of batch graphs to a metafile

SYNOPSIS
bgraph [—type ..][+variable value ..][file ..]

DESCRIPTION
Bgraph reads each graph file in sequence and converts it to a plot suitable for use by a metafile driver pro-
gram. If no files are given, the standard input is read.

The graph type can be defined with a —type option. Types are simply include files which set default values
for certain variables. The actual include file name is the type concatanated with ".plt". Typical types are
"scatter”, "line", and "curve". A scatter graph shows only points. A line graph shows only lines connecting

points. A curve graph shows both points and connecting lines.

Variables can be set explicitly with +variable value options. The following standard graph variables are

supported:
fthick The frame thickness, valued from 0 to 4. A value of 0 turns the frame off.
grid The grid: 1 is on, 0 is off.

include The include file name. Graph input is taken from the file. If the file is not found in the current
directory, it is searched for in a set of standard locations.

legend The legend title.
othick The origin axis thickness, valued from 0 to 4. A value of 0 turns the origin off.

period The period for a polar plot. For a plot in degrees, use 360. For radians, use 6.283. A value of
0 (the default) indicates a Cartesian plot.

subtitle The graph subtitle.

symfile The point symbol metafile.

tstyle The frame tick mark style. The default value is 1, which is outward tick marks. A value of 2 is
inward ticks, 3 is cross ticks. A value of 0 disables frame tick marks.

title The graph title.

xlabel The x axis label.

Xxmap The x axis mapping function. An x axis mapping xmap(x)=log(x) produces a log x axis.

Xmax The x axis maximum.

Xxmin The x axis minimum.

xstep The x axis step.

ylabel The y axis label.
ymap The y axis mapping function. Any axis mapping ymap(y)=log(y) produces a log y axis.

ymax The y axis maximum.
ymin The y axis minimum.
ystep The y axis step.

In addition to the standard graph variables, each curve has a set of variables. The variables for curve A’ all
begin with the letter *A’; the variables for curve "B’ all begin with the letter *B’, and so on. Up to 8 curves
are supported on a single graph, A’ through "H’. The variables for curve *A’ are:

A The function for curve *A’. If Adata is undefined, xmin, xmax and Anpoints are used to deter-
mine which x values to plot. If Adata is defined and A is a function of a single variable (ie.
A(X)), data values are interpreted as x values to be plotted. If Adata is defined and A is a func-
tion of two variables (ie. A(x,y)), data values are interpreted as (x,y) pairs and A becomes a
mapping function for the data.

RADIANCE 6/24/98 1

BGRAPH(1)

Acolor

Adata

Alabel

BGRAPH(1)

The color for curve A. The values 1-4 map to black, red, green, and blue respectively. A value
of 0 turns curve A off.

The point data for curve "A’. If Adata is set to the name of a file, data is read and interpreted
from that file. If Adata is set to a command (beginning with an exclamation, ’!’), the output of
the command is read as data. Otherwise, data is read from the current file. Data values are
separated by white space and/or commas. A semicolon or end of file indicates the end of data.

The label for curve *A’. The curve label is printed in the legend when a curve is defined.

Alintype The line type for curve *A’, valued from 0 to 4. A value of 0 turns line drawing off. A value of

1is solid, 2 is dashed, 3 is dotted, and 4 is dot-dashed.

Anpoints The number of symbol points for curve *A’. If Adata is defined, all points will be connected

with the selected curve line, but only Anpoints points will be indicated with a symbol. This
prevents messy graphs when large number of points are defined. If A is defined and Adata is
not, Anpoints is used along with xmin and xmax to determine which x values to plot.

Asymsize The symbol radius for curve *A’. The default size is 100. A value of 0 turns symbols off.

Asymtype This is the name of a segment in symfile which defines the graphics symbol for curve "A’.

Athick

The line thickness for curve *A’, valued from 0 to 4. A thickness of 0 turns line drawing off.

GRAPH FILE FORMAT
A graph file contains definitions for graph and curve variables. These definitions fall one per line in the fol-
lowing formats:

vreal = expression # real variable
vfunction(x) = expression(x) # function
vstring = "string" # string variable
vdata = filename # data file
vdata ="lcommand" # data generator
variable = continued \
line # newline escaped

vdata = # data

viv2v3v4 ..,

Comments are preceded by a ’#’, and continue to the end of the line. Except for comments, the newline
can be escaped with a backslash. Note that in the special case where data is contained in the graph file, a
definition will continue over more than one line. Data values can be separated by commas or white space,
and reading continues until a semicolon is reached. No comments are allowed in the data section of a file.

An expression is an algebraic formula containing numbers, variables, functions, and the standard operators
{+,-*/,7,(,)} (see calc(1)). Besides the variables described in the last section, definitions of intermediate
real variables and functions are allowed for convenience. They may be used in expressions of graph and
curve variables.

EXAMPLE

A file to graph the sine function is:

title = "Sine Function from 0 to Pi"
Pl = 3.141592653589793

A(X) =sin(x)
xmin=0
xmax = Pl

Anpoints = 100

Or, to graph selected points:

RADIANCE

6/24/98 2

BGRAPH(1) BGRAPH(1)

title = "Sine Function at 0, .2, .6, and .8"
A(X) =sin(x)
Adata =

0,.2
6,.8

The commands to plot these files might be:
bgraph -line sinel.plt | impress | ipr

bgraph -curve +ymin -1 +ymax 1 sine2.plt | t4014

FILES
Jusr/local/lib/meta/*.mta /usr/local/lib/meta/*.plt *.plt

AUTHOR
Greg Ward

BUGS
There is no mechanism provided for undefining a variable. An axis mapping function which is not invert-
ible (monotonically increasing or decreasing) confuses the program terribly.

SEE ALSO
calc(1), dgraph(1), gcomp(1), igraph(1), impress(1), metafile(5), mx80(1), mt160I(1), t4014(1), x11meta(1)

RADIANCE 6/24/98 3

CALC(1) CALC(1)

NAME
calc - calculator

SYNOPSIS

calc [file]
DESCRIPTION

Calc is a algebraic calculator designed primarily for interactive use. Each formula definition file is read and

compiled. The standard input is then read, expressions are evaluated and results are sent to the standard

output.

An expression contains real numbers, variable names, function calls, and the following operators:

+-*/"

Operators are evaluated left to right, except "™, which is right associative. Exponentiation has the highest
precedence; multiplication and division are evaluated before addition and subtraction. Expressions can be
grouped with parentheses. Each result is assigned a number, which can be used in future expressions. For
example, the expression ($3*10) is the result of the third calculation multiplied by ten. A dollar sign by
itself may be used for the previous result. All values are double precision real.

In addition, variables and functions can be defined by the user. A variable definition has the form:

var = expression ;

Any instance of the variable in an expression will be replaced with its definition. A function definition has
the form:

func(al, a2, ..) = expression ;

The expression can contain instances of the function arguments as well as other variables and functions.
Function names can be passed as arguments. Recursive functions can be defined using calls to the defined
function or other functions calling the defined function.

To define a constant expression, simply replace the equals sign (’=") with a colon (’:*) in a definition. Con-
stant expressions are evaluated only once, the first time they are used. This avoids repeated evaluation of
expressions whose values never change. lIdeally, a constant expression contains only numbers and refer-
ences to previously defined constant expressions and functions. Constant function definitions are are
replaced by their value in any expression that uses them with constant arguments. All predefined functions
and variables have the constant attribute. Thus, "sin(P1/4)" in an expression would be immediately replaced
by ".707108" unless sin() or Pl were redefined by the user. (Note that redefining constant expressions is not
a recommended practice!)

A variable or function’s definition can be displayed with the *?” command:
? name

If no name is given, all definitions are printed. The *>" command writes definitions to a file:
> file

Similarly, the ’<” command loads definitions.

The following library of predefined functions and variables is provided:

Pl the ratio of a circle’s circumference to its diameter.

if(cond, then, else)
if cond is greater than zero, then is evaluated, otherwise else is evaluated. This function is nec-
essary for recursive definitions.

RADIANCE 2/3/95 1

CALC(1)

CALC(1)

select(N, al, a2, ..)

rand(x)
floor(x)
ceil(x)
sqrt(x)
exp(x)
log(x)
log10(x)

return aN (N is rounded to the nearest integer). This function provides array capabilities. If N
is zero, the number of available arguments is returned.

compute a random number between 0 and 1 based on x.
return largest integer not greater than x.

return smallest integer not less than x.

return square root of x.

compute e to the power of x (e approx = 2.718281828).
compute the logarithm of x to the base e.

compute the logarithm of x to the base 10.

sin(x), cos(x), tan(x)

trigonometric functions.

asin(x), acos(x), atan(x)

inverse trigonometric functions.

atan2(y, x) inverse tangent of y/x (range -pi to pi).

AUTHOR
Greg Ward

SEE ALSO

ev(1), rcalc(1), tabfunc(1)

RADIANCE

2/3/95 2

CNT(1) CNT(1)

NAME
cnt - index counter

SYNOPSIS
cntN ..

DESCRIPTION
Cnt counts from 0 to N-1, producing N lines of output. If multiple arguments are given, cnt produces a
nested array of values where the final counter rotates fastest through its range. Cnt is most useful in con-
junction with rcalc(1) to produce array values.

EXAMPLE
To create a 3 by 5 array:

cnt35

AUTHOR
Greg Ward

SEE ALSO
lam(1), neat(1), rcalc(1), total(1)

RADIANCE 11/15/93 1

COMPAMB(1) COMPAMB(1)

NAME
compamb - compute good ambient value for a rad input file

SYNOPSIS
compamb [-c][—e] rad_input_file

DESCRIPTION
Compamb computes a good ambient value for the specified rad(1) variable file and appends it to the file as
a "render= -av" option. If the —c option is specified, then compamb includes color information in the com-
puted ambient value, rather than estimating a grey value to avoid rendering color shifts. If the —e option is
specified, then compamb also computes a good exposure value for this scene, and appends it to the rad file
as well.

Compamb is a shell script that makes calls to other RADIANCE programs and utilities to do the actual
work. A substantial amount of time may be required to complete this script, since compamb calls rpict(1)
to render low resolution frames for each view in the rad file, setting "QUALITY=High" to compute inter-
reflections. The resulting ambient file is thrown away, since it would disagree with the new -av setting used
for the final renderings. This method is preferable to setting the —aw option of rpict, which frequently
results in splotchy artifacts.

AUTHOR
Greg Ward Larson

SEE ALSO
lookamb(1), rad(1), rpict(1)

RADIANCE 1/23/98 1

cVv(1) cV(1)

NAME

cv - convert between metafile formats
SYNOPSIS

cv[-r][file..]

DESCRIPTION
Cv reads each human readable metafile file in sequence and converts it to a binary form. If the option —r is
specified, the reverse conversion is performed.

If no input files are specified, the standard input is read.

EXAMPLE
To convert the binary file meta.bin to its human-readable equivalent, and put the result in meta.human

cV -r meta.bin > meta.human

AUTHOR
Greg Ward

SEE ALSO
meta(3), metafile(5), pexpand(1), psort(1)

RADIANCE 6/24/98 1

DAYFACT(1) DAYFACT(1)

NAME
dayfact - compute illuminance and daylight factor on workplane

SYNOPSIS
dayfact [falsecolor options]

DESCRIPTION
Dayfact is an interactive script for computing workplane illuminance, and daylight factors and potential
daylight savings using rtrace(1). The script falsecolor(1) is then used to draw contour lines on the resulting
Radiance picture.

AUTHOR
Greg Ward

ACKNOWLEDGEMENT
Work on this program was initiated and sponsored by the LESO group at EPFL in Switzerland.

SEE ALSO
falsecolor(1), glare(1), rtrace(1), ximage(1)

RADIANCE 11/15/93 1

DGRAPH(1) DGRAPH(1)

NAME
dgraph - do a set of graphs to a dumb terminal

SYNOPSIS
dgraph [-w width][-1 length][+variable value ..][file ..]

DESCRIPTION
Dgraph reads each graph file in sequence and converts it to a character plot displayable on any ascii device.

If no files are given, the standard input is read.

Across the top of the plot, the extrema are printed. This is the only indication of the axis size. Curves are
represented with their respective letter A’ for curve A, etc.) at each point. Where two or more curves
cross, a number is shown instead.

The size of the output array can be specified as a certain width and length. The default size is 79 by 22.

Variables can be set explicitly with +variable value options. See bgraph(1) for details.

EXAMPLE
To get a quick glimpse of the sine function from 0 to 4.
dgraph
A(X)=sin(x)
Anpoints=100
Xxmin=0
Xmax=4
"D
AUTHOR
Greg Ward
BUGS
There is no mechanism provided for undefining a variable.
SEE ALSO

bgraph(1), calc(1), gcomp(1), igraph(1)

RADIANCE 6/24/98 1

EV(1) EV(1)

NAME
ev - evaluate expressions

SYNOPSIS
ev ’expr’ ..

DESCRIPTION
Ev evaluates expressions given on the command line, and sends the results to the standard output, one per
line. An expression contains real numbers, function calls, and the following operators:

+-*/"

Operators are evaluated left to right, except ***, which is right associative. Powers have the highest prece-
dence; multiplication and division are evaluated before addition and subtraction. Expressions can be
grouped with parentheses. All values are double precision real.

The following library of functions is available:

if(cond, then, else)
if cond is greater than zero, then is evaluated, otherwise else is evaluated.

select(N, al, a2, ..)
return aN (N is rounded to the nearest integer). If N is zero, the number of available arguments
is returned.

rand(x) compute a random number between 0 and 1 based on x.
floor(x) return largest integer not greater than x.

ceil(x) return smallest integer not less than x.

sqrt(x) return square root of x.

exp(x) compute e to the power of x (e approx = 2.718281828).
log(x) compute the logarithm of x to the base e.

log10(x) compute the logarithm of x to the base 10.

sin(x), cos(x), tan(x)
trigonometric functions.

asin(x), acos(x), atan(x)
inverse trigonometric functions.

atan2(y, x) inverse tangent of y/x (range -pi to pi).

EXAMPLE
To pass the square root of two and the sine of .5 to a program:

program ‘ev ’sqrt(2)’ ’sin(.5)

AUTHOR
Greg Ward

SEE ALSO
calc(1), rcalc(1)

RADIANCE 10/28/96 1

FALSECOLOR(1) FALSECOLOR(1)

NAME
falsecolor - make a false color RADIANCE picture

SYNOPSIS
falsecolor [—i input][—p picture][—cb | —cl][—e][—s scale][—I label][—n ndivs][—log decades][
—m mult][-r redv][—g grnv][—b bluv]

DESCRIPTION
Falsecolor produces a false color picture for lighting analysis. Input is a rendered Radiance picture.

By default, luminance is displayed on a linear scale from 0 to 1000 nits, where dark areas are blue and
brighter areas move through the spectrum to red. A different scale can be given with the —s option. The
default multiplier is 179, which converts from radiance or irradiance to luminance or illuminance, respec-
tively. A different multiplier can be given with —m to get daylight factors or whatever. For a logarithmic
rather than a linear mapping, the —log option can be used, where decades is the number of decades below
the maximum scale desired.

A legend is produced for the new image with a label given by the —I option. The default label is "Nits",
which is appropriate for standard Radiance images. If the -i option of rpict(1) was used to produce the
image, then the appropriate label would be "Lux".

If contour lines are desired rather than just false color, the —cl option can be used. These lines can be
placed over another Radiance picture using the -p option. If the input picture is given with —ip instead of
—i, then it will be used both as the source of values and as the picture to overlay with contours. The —cb
option produces contour bands instead of lines, where the thickness of the bands is related to the rate of
change in the image. The —n option can be used to change the number of contours (and corresponding leg-
end entries) from the default value of 8.

The —e option causes extrema points to be printed on the brightest and darkest pixels of the input picture.

The remaining options, —r, —g, and —b are for changing the mapping of values to colors. These are expres-
sions of the variable v, where v varies from 0 to 1. These options are not recommended for the casual user.

If no —i or —ip option is used, input is taken from the standard input. The output image is always written to
standard output, which should be redirected.

EXAMPLES
To create a false color image directly from rpict(1):

rpict -vf default.vp scene.oct | falsecolor > scene.pic
To create a logarithmic contour plot of illuminance values on a Radiance image:

rpict -i -vf default.vp scene.oct > irrad.pic
rpict -vf default.vp scene.oct > rad.pic
falsecolor -i irrad.pic -p rad.pic -cl -log 2 -1 Lux > lux.pic
AUTHOR
Greg Ward

ACKNOWLEDGEMENT
Work on this program was initiated and sponsored by the LESO group at EPFL in Switzerland.

SEE ALSO
getinfo(1), pcomb(1), pcompos(1), pextrem(1), pfilt(1), pflip(1), protate(1), psign(1), rpict(1), ximage(1)

RADIANCE 11/15/93 1

FINDGLARE() FINDGLARE(1)

NAME
findglare - locate glare sources in a RADIANCE scene

SYNOPSIS
findglare [—v][—ga angles][—t threshold][—r resolution][—c][—p picture][view options] [[rtrace
options] octree]

DESCRIPTION
Findglare locates sources of glare in a specific set of horizontal directions by computing luminance samples
from a RADIANCE picture and/or octree. Findglare is intended primarily as a preprocessor for glare cal-
culation programs such as glarendx(1), and is usually accessed through the executive script glare(1).

If only an octree is given, findglare calls rtrace to compute the samples it needs. If both an octree and a pic-
ture are specified, findglare calls rtrace only for samples that are outside the frame of the picture. If find-
glare does not have an octree and the picture does not completely cover the area of interest, a warning will
be issued and everything outside the picture will be treated as if it were black. It is preferable to use a pic-
ture with a fisheye view and a horizontal and vertical size of at least 180 degrees (more horizontally if the
—ga option is used -- see below). Note that the picture file must contain correct view specifications, as
maintained by rpict(1), rview(1), pfilt(1) and pinterp(1). Specifically, findglare will not work on pictures
processed by pcompos(1) or pcomb(1). It is also essential to give the proper rtrace options when an octree
is used so that the calculated luminance values are correct.

The output of findglare is a list of glare source directions, solid angles and average luminances, plus a list
of indirect vertical illuminance values as a function of angle. Angles are measured in degrees from the
view center, with positive angles to the left and negative angles to the right.

By default, findglare only computes glare sources and indirect vertical illuminance for the given view
(taken from the picture if none is specified). If the view direction is not horizontal to begin with (ie. per-
pendicular to the view up vector), findglare will substitute the closest horizontal direction as its view center.
The —ga option can be used to specify a set of directions to consider about the center of view. This specifi-
cation is given by a starting angle, ending angle, and step angle like so:
start-end:step

All angles must be whole degrees within the range 1 to 180. Multiple angle ranges may be separated by
commas, and individual angles may be given without the ending and step angles. Note that findglare will
complain if the same angle is given twice either explicitly or implicitly by two ranges.

Findglare normally identifies glare sources as directions that are brighter than 7 times the average lumi-
nance level. It is possible to override this determination by giving an explicit luminance threshold with the
—t option. It usually works best to use the ’I” command within ximage(1) to decide what this value should
be. Alternatively, one can use the ’t” command within rview(1). The idea is to pick a threshold that is well
above the average level but smaller than the source areas.

If the sources in the scene are small, it may be necessary to increase the default sample resolution of find-
glare(1) using the —r option. The default resolution is 150 vertical samples and a proportional number of
horizontal samples. If besides being small, the sources are not much brighter than the threshold, the —c flag
should be used to override findglare’s default action of absorbing small sources it deems to be insignificant.

The —v flag switches on verbose mode, where findglare reports its progress during the calculation.

EXAMPLE
To calculate the glare sources in the image "scene.pic™:

findglare -p scene.pic > scene.glr
To compute the Guth visual comfort probability from this result:
glarendx -t guth_vcp scene.glr

To compute the glare for a set of angles around the view "good.vp" from the octree "scene.oct™" using an
ambient level of .1:

findglare -vf good.vp -ga 10-60:10 -av .1 .1 .1 scene.oct > scene.glr

RADIANCE 11/15/93 1

FINDGLARE() FINDGLARE(1)

AUTHOR
Greg Ward

ACKNOWLEDGEMENT
Work on this program was initiated and sponsored by the LESO group at EPFL in Switzerland.

SEE ALSO
getinfo(1), glare(1), glarendx (1), pfilt(1), rpict(1), rtrace(1), rview(1), xglaresrc(1), ximage(1)

RADIANCE 11/15/93

GCOMP(1) GCOMP(1)

NAME
gcomp - do computations on a graph file.

SYNOPSIS
gcomp [-amilh][+variable value ..][file ..]

DESCRIPTION
Gcomp reads each graph file in sequence and computes the specified calculations. The type options are as

follows:

-n Print the name of each curve.

-a Print average and standard deviation of each curve.

-m Print minimum and maximum for each curve.

=i Print Romberg’s approximation to the integral of each curve.

l Print the slope, intercept, and correlation coefficient using the least squares method of linear
regression.

-h Do not print a header in the output.

The calculations will be displayed as columns in the order they are specified on the command line. If no
files are given, the standard input is read.

Variables can be set explicitly with +variable value options. The only truely useful variables for this pro-
gram are xmin and xmax. They determine boundaries for the calculations.

EXAMPLE
To compute the approximate integral of sin(x)/log(x) from 2 to 4:
gcomp -i
A(X)=sin(x)/log(x);
Anpoints=100;
Xmin=2;
Xmax=4,
"D
AUTHOR
Greg Ward
BUGS
Only the y values can be used for computation.
SEE ALSO

bgraph(1), calc(1), dgraph(1), igraph(1)

RADIANCE 6/24/98 1

GENBLINDS(1) GENBLINDS(1)

NAME
genblinds - generate a RADIANCE description of venetian blinds

SYNOPSIS
genblinds mat name depth width height nslats angle [—r|+r rcurv]

DESCRIPTION
Genblinds produces a RADIANCE scene description of a set of venetian blinds. The depth of the blinds (X
dimension) is given first, followed by the width (Y dimension), followed by the height (Z dimension). The
number of slats to place evenly within this height is given as nslats. The angle of the blind, where zero is
perfectly horizontal and a positive angle tilts the positive X edge upwards, is given in degrees. The blinds
are initially situated so that the corner of the bottom blind is height/nslats/2 above the XY plane, and all
coordinates are positive. Each new slat is placed height/nslats above the previous one, until the top slat is at
height - height/nslats/2 . The blinds may of course be moved from this starting point with the xform(1)
command.

If curved blinds are desired, a radius of curvature may be given with the +/-r option. If given as -r, The cur-
vature is downward (which is the usual configuration). If the option is given as +r, then the curvature is
upward. The radius indicates how far from each slat its effective cylindrical center resides. Each slat will
be broken into as many polygons as is necessary to keep the delta changes in angle less than 10 degrees.
(Note that this may result in a rather large number of polygons.)

EXAMPLE
To produce a curved set of blinds with 15 slats:

genblinds white blind 1 46 88 118 15 -r 1 > blinds.rad

AUTHOR
Jean-Louis Scartezzini and Greg Ward

SEE ALSO
genbox(1), genrev(1), gensurf(1), genworm(1), rpict(1), rview(1), xform(1)

RADIANCE 10/10/94 1

GENBOX(1) GENBOX(1)

NAME
genbox - generate a RADIANCE description of a box

SYNOPSIS
genbox mat name xsiz ysiz zsiz [=i][-r rad | —b bev]

DESCRIPTION
Genbox produces a RADIANCE scene description of a parallelepiped with one corner at the origin and the
opposite corner at (xsiz, ysiz, zsiz). The sides of the box will be parallel to the three coordinate planes. The
surfaces that make up the box will be modified by mat and their identifiers will begin with name. The —i
option can be used to produce a box with inward directed surface normals. The —r option can be used to
specify the radius for rounded edges. The —b option can be used to specify the indentation for beveled
edges.

EXAMPLE
To produce a rectangular box made of wood with beveled edges:

genbox wood box1 5 8 3 -b .5 > box1

AUTHOR
Greg Ward

BUGS
Because spheres and cylinders are used to construct boxes with rounded edges, a transparent box of this
type appears quite messy.

SEE ALSO
genrev(1), gensurf(1), genworm(2), rpict(1), rview(1), xform(1)

RADIANCE 11/15/93 1

GENCLOCK(1) GENCLOCK(1)

NAME
genclock - generate a RADIANCE description of a clock

SYNOPSIS
genclock [—f face_mat][—c case_mat][-n name] { HH:MM | hours }

DESCRIPTION
Genclock produces a RADIANCE scene description of an analog clock showing the given hour. The hour
may either be given as HH:MM or decimal hours.

The face of the clock will have a radius of 1.0 units, with the surrounding case 1.1 (2.2 diameter). The ori-
gin is at the center of the back, and the face looks in the positive X-direction. The 12 o’clock direction cor-
responds to the positive Z-axis. (The Y-axis direction is 3 o’clock.) The xform(1) command may be used
to resize and relocate the clock as desired.

Normally, genclock produces all of the materials necessary for its own description, but options are provided
to specify alternate materials for the face and case. The numbers on the face are in dark lettering, so the
face material must be relatively light for them to show up well. By default, the clock is given the name
"clock," but this may be changed with the —n option.

EXAMPLE
To produce a 12 inch diameter clock showing 10:35 and hang it at 60 on a wall facing the Y-direction at
Y=10:

genclock 10:35 | xform -s 6 -rz 90 -t 20 10 60

AUTHOR
Greg Ward

SEE ALSO
genbox(1), genrev(1), gensurf(1), genworm(1), rpict(1), rview(1), xform(1)

RADIANCE 4/9/97 1

GENPRISM(1) GENPRISM(1)

NAME
genprism - generate a RADIANCE description of a prism

SYNOPSIS
genprism mat name { - | vfile |[Nv1v2..vN} [-l Ivect][-r radius][-c][—e]

DESCRIPTION

Genprism produces a RADIANCE scene description of a prism, or extruded polygon. The polygon to
extrude lies in the z==0 plane, and is given as a list of (x,y) pairs on the standard input (-), or from the file
vfile, or on the command line preceded by the number of vertices, N. The order of the vertices and the
extrusion vector lvect (default (0,0,1)) determine the surface orientations. The surfaces that make up the
prism will be modified by mat and their identifiers will begin with name. The —r option may be used to
round the corners of the object using spheres and cylinders. The —c option inhibits generation of a face
connecting the last vertex to the first. The —e option inhibits generation of the end polygons.

EXAMPLE
To produce a equilateral triangular prism:

genprism clear_plastic prism300.5.866 10

AUTHOR
Greg Ward

BUGS
The rounding option only works for opaque prisms with outward facing normals. If the normals face
inward, the appearance will be bizarre.

SEE ALSO
genbox(1), genrev(1), gensurf(1), genworm(1), rpict(1), rview(1), xform(1)

RADIANCE 3/19/96 1

GENREV() GENREV(1)

NAME

genrev - generate a RADIANCE description of surface of revolution
SYNOPSIS

genrev mat name *z(t)’ ’r(t)’ nseg [—e expr][—ffile][-s]
DESCRIPTION

Genrev produces a RADIANCE scene description of a surface of revolution. The object will be composed
of nseg cones, cups, cylinders, tubes or rings following the parametric curve defined by z(t) (height) and r(t)
(radius). When z is increasing with t, the surface normal points outward. When z is decreasing, the normal
points inward. The variable t used in the function expressions varies from 0 to 1 in even steps of 1/nseg.
The expressions are of the same type used in RADIANCE function files. Auxiliary expressions and/or files
may be specified in any number of —e and —f options. The —s option smooths the surfaces using Phong
normal interpolation.

EXAMPLE
To generate a torus with an inner radius of 1 and an outer radius of 3:

genrev steel torus ’sin(2*P1*t)’ *1+cos(2*P1*t)’ 32

AUTHOR
Greg Ward

BUGS
The -s option doesn’t modify the surface normal correctly for the opposite side.

SEE ALSO
calc(1), genbox(1), gensurf(1), genworm(1), rpict(1), rview(1), xform(1)

RADIANCE 11/15/93 1

GENSKY(1) GENSKY(1)

NAME
gensky - generate a RADIANCE description of the sky

SYNOPSIS
gensky month day time [options]
gensky -ang altitude azimuth [options]
gensky -defaults

DESCRIPTION
Gensky produces a RADIANCE scene description for the CIE standard sky distribution at the given month,
day and time. By default, the time is interpreted as local standard time on a 24-hour clock. The time value
may be given either as decimal hours, or using a colon to separate hours and minutes. If the time is imme-
diately followed (no white space) by a North American or European time zone designation, then this deter-
mines the standard meridian, which may be specified alternatively with the —m option. The following time
zones are understood, with their corresponding hour differences from Greenwich Mean Time:

Standard time:
YST PST MST CST EST GMT
9 8 7 6 5 0

CET EET AST GST IST JST NZST
-1 -2 -3 -4 -55-9 -12

Daylight savings time:
YDT PDT MDT CDT EDT BST
8 7 6 5 4 -1

CEST EEST ADT GDT IDT JDT NZDT
-2 -3 -4 -5 -65 -10 -13

If the time is preceded by a plus sign (’+’), then it is interpreted as local solar time instead. It is very
important to specify the correct latitude and longitude (unless local solar time is given) using the —a and —o
options to get the correct solar angles.

The second form gives the solar angles explicitly. The altitude is measured in degrees above the horizon,
and the azimuth is measured in degrees west of South.

The third form prints the default option values.

The output sky distribution is given as a brightness function, skyfunc. Its value is in watts/steradian/meter2.
The x axis points east, the y axis points north, and the z axis corresponds to the zenith. The actual material
and surface(s) used for the sky is left up to the user. For a hemispherical blue sky, the description might be:

Igensky 41 14

skyfunc glow skyglow
0

0

49910

skyglow source sky
0

0

4001180

Often, skyfunc will actually be used to characterize the light coming in from a window.

In addition to the specification of a sky distribution function, gensky suggests an ambient value in a com-
ment at the beginning of the description to use with the —av option of the RADIANCE rendering programs.

RADIANCE 4/24/98 1

GENSKY(1)

GENSKY(1)

(See rview(1) and rpict(1).) This value is the cosine-weighted radiance of the sky in watts/stera-
dian/meter2.

Gensky supports the following options.

-S

+S

—-C

-g rfl

-b brt

-B irrad

-r rad

-Rirrad

-ttrb

Sunny sky without sun. The sky distribution will correspond to a standard CIE clear day.

Sunny sky with sun. In addition to the sky distribution function, a source description of the sun
is generated.

Cloudy sky. The sky distribution will correspond to a standard CIE overcast day.
Intermediate sky without sun. The sky will correspond to a standard CIE intermediate day.

Intermediate sky with sun. In addition to the sky distribution, a (somewhat subdued) sun is
generated.

Uniform cloudy sky. The sky distribution will be completely uniform.

Average ground reflectance is rfl. This value is used to compute skyfunc when Dz is negative.
Ground plane brightness is the same for —s as for +s. (Likewise for —i and +i, but see the —r
option below.)

The zenith brightness is brt. Zenith radiance (in watts/steradian/meter2) is normally computed
from the sun angle and sky turbidity (for sunny sky). It can be given directly instead, using this
option.

Same as —b, except zenith brightness is computed from the horizontal diffuse irradiance (in
watts/meter?2).

The solar radiance is rad. Solar radiance (in watts/steradian/meter2) is normally computed
from the solar altitude. This option may be used to override the default calculation. If a value
of zero is given, no sun description is produced, and the contribution of direct solar to ground
brightness is neglected.

Same as —r, except solar radiance is computed from the horizontal direct irradiance (in
watts/meter?2).

The turbidity factor is trb. Greater turbidity factors correspond to greater atmospheric scatter-
ing. A turbidity factor of 1.0 indicates an ideal clear atmosphere (i.e. a completely dark sky).
Values less than 1.0 are physically impossible.

The following options do not apply when the solar altitude and azimuth are given explicitly.

-a lat

-0 lon

-m mer

EXAMPLE

The site latitude is lat degrees north. (Use negative angle for south latitude.) This is used in the
calculation of sun angle.

The site longitude is lon degrees west. (Use negative angle for east longitude.) This is used in the
calculation of solar time and sun angle. Be sure to give the corresponding standard meridian also!
If solar time is given directly, then this option has no effect.

The site standard meridian is mer degrees west of Greenwich. (Use negative angle for east.) This
is used in the calculation of solar time. Be sure to give the correct longitude also! If solar time is
given directly, then this option has no effect.

To produce a sunny sky for July 4th at 2:30pm Eastern daylight time at a site latitude of 42 degrees, 89
degrees west longitude:

gensky 7 4 14:30EDT +s -a 42 -0 89

To produce a sunny sky distribution for a specific sun position but without the sun description:

gensky -ang 23 -40 -s

FILES

Jusr/local/lib/ray/skybright.cal

RADIANCE

4/24/98 2

GENSKY(1) GENSKY(1)

AUTHOR
Greg Ward

SEE ALSO
rpict(1), rview(1), xform(1)

RADIANCE 4/24/98 3

GENSURF(1) GENSURF(1)

NAME

gensurf - generate a RADIANCE or Wavefront description of a curved surface

SYNOPSIS

gensurf mat name "x(s,t)’ 'y(s,t)’ "z(s,;t)’ mn[-eexpr][-ffile][-s][0]
gensurf mat name "x(s,t)’ y(s,t)’ dfilem n [—e expr][-ffile][-s][-0]
gensurf mat name dfile dfile dfilemn[-s][-0]

DESCRIPTION

Gensurf produces either a RADIANCE scene description or a Wavefront .OBJ file of a functional surface
defined by the parametric equations x(s,t), y(s,t), and z(s,t). The surface normal is defined by the right hand
rule as applied to (s,t). S will vary from 0 to 1 in steps of 1/m, and t will vary from 0 to 1 in steps of 1/n.
The surface will be composed of 2*m*n or fewer triangles and quadrilaterals. The expressions are of the
same type used in RADIANCE function files. Auxiliary expressions and/or files may be specified in any
number of —e and —f options. The —s option adds smoothing (surface normal interpolation) to the surface.
The —o option produces a Wavefront .OBJ file rather than a RADIANCE scene description. This is most
useful as input to the obj2mesh(1) program for producing a compiled mesh. A single "usemtl" statement
will appear at the beginning of the .OBJ output, echoing the modifier given on the command line.

Rough holes may be cut in the mesh by defining a valid(s,t) function. Where this function is positive, poly-
gon vertices will be produced. Where it is negative, no geometry will be output. Surface normal interpola-
tion will ignore any invalid vertices.

The second invocation form reads z data values from the file dfile. This file must give either m*n or
(m+1)*(n+1) floating point z values. If m*n values are given, then the values correspond to the centroid of
each quadrilateral region. If (m+1)*(n+1) values are given, then the values correspond to the vertices of
each quadrilateral region. The ordering of the data in the file is such that the s values are changing faster
than the t values. If a minus (’-") is given for dfile, then the values are read from the standard input.

The third invocation form is used to read coordinate triplets from a file or the standard input. The three
dfile arguments must all be the same, and the corresponding file must contain three floating point values for
each point location. The ordering and other details are the same as those described for z value files above.

EXAMPLE

To generate a tesselated sphere:

gensurf crystal ball ’sin(PI*s)*cos(2*PI*t)’ *cos(PI*s)’ "sin(P1*s)*sin(2*PI*t)’ 7 10
To generate a 10x20 smoothed height field from 12 recorded vertex z values:

gensurf dirt ground *10*s’ *20*t” height.dat 2 3 -s

AUTHOR

BUGS

Greg Ward

The smoothing operation requires that functions be defined beyond the [0,1] boundaries of s and t.

SEE ALSO

calc(1), genbox(1), genrev(1), genworm(1), obj2mesh(1), obj2rad(1), rpict(1), rview(1), xform(1)

RADIANCE 11/15/93 1

GENWORM(1) GENWORM(1)

NAME
genworm - generate a RADIANCE description of a functional worm

SYNOPSIS
genworm mat name *x(t)” "y(t)’ "z(t)’ 'r(t)’ nseg [—e expr][—f file]

DESCRIPTION
Genworm produces a RADIANCE scene description of a worm defined by the parametric equations x(t),
y(t), z(t), and r(t) (the radius). T will vary from 0 to 1 in steps of 1/nseg. The surface will be composed of
nseg cones or cylinders and nseg+1 spheres. The expressions are of the same type used in RADIANCE
function files. Auxiliary expressions and/or files may be specified in any number of —e and —f options.

EXAMPLE
To generate a banana:
genworm yellow banana *0” *5*sin(t)’ 5*cos(t)’ *.4-(.5-t)*(.5-t)” 20
AUTHOR
Greg Ward

BUGS
Since the worm is constructed of intersecting surfaces, only opaque materials should be used with this
object. Also, a worm cannot double back inside itself without making a mess.

SEE ALSO
calc(1), genbox(1), genrev(1), gensurf(1), rpict(1), rview(1), xform(1)

RADIANCE 11/15/93 1

GETBBOX(1) GETBBOX(1)

NAME
getbbox - compute bounding box for RADIANCE scene

SYNOPSIS
getbbox [-w][-h][input ..]

DESCRIPTION
Getbbox reads each scene description input and computes the minimum axis-aligned parallelopiped that
will enclose all of the objects. Each input can be either a file name, or a command (enclosed in quotes and
preceded by a “!"). If no arguments are given, the standard input is read. A hyphen (’-’) can also be used to
indicate the standard input.

The —w option suppresses warnings. The —h option suppresses the header line "xmin xmax ymin ymax
zmin zmax".

EXAMPLE
To compute the bounding box for the object *“thingy””:

getbbox thingy
To preview “‘scene”:
preview -v FOUR -b ‘getbbox -h scene‘ scene

NOTES
Since expanding a scene can require considerable overhead, it is better to use the bounding cube produced
by oconv(1) and read by getinfo(1) if an octree exists for the scene. However, there are certain circum-
stances, such as foreign object placement, that require knowing the bounding box rather than just the
bounding cube.

AUTHOR
Greg Ward

ACKNOWLEDGEMENT
Work on this program was sponsored by the LESO group at EPFL in Switzerland.

SEE ALSO
getinfo(1), oconv(1), xform(1)

RADIANCE 11/15/93 1

GETINFO(1) GETINFO(1)

NAME

getinfo - get header information from a RADIANCE file
SYNOPSIS

getinfo [-d][file ..]

getinfo -

DESCRIPTION

Getinfo reads the header of each RADIANCE file and writes it to the standard output. Octree and picture
files are in a binary format, which makes it difficult to determine their content. Therefore, a few lines of
text are placed at the beginning of each file by the RADIANCE program that creates it. The end of the
header information and the start of the data is indicated by an empty line. The —d option can be used to
print the dimensions of an octree or picture file instead. For an octree, getinfo —d prints the bounding cube
(xmin ymin zmin size). For a picture, getinfo —d prints the y and x resolution (-Y yres +X xres). If no file
is given, the standard input is read.

The second form of getinfo with a hyphen simply removes the header and copies the body of the file from
the standard input to the standard output.

EXAMPLE
To print the header information from scenel.oct and scene2.pic:

getinfo scenel.oct scene2.pic

AUTHOR
Greg Ward

SEE ALSO
oconv(1), pfilt(1), rhinfo(1), rpict(1), rview(1)

RADIANCE 1/15/99 1

GLARE(1) GLARE(1)

NAME
glare - perform glare and visual comfort calculations

SYNOPSIS
glare [glarefile [picture [octree] 1]

DESCRIPTION
Glare is an interactive script for executing programs used to locate glare sources and compute glare indices
and visual comfort probability. If no glarefile is given, the program prompts the user for a one. If the file
does not exist, glare asks the user some questions about the scene in question then runs findglare(1) to com-
pute values to store in the file. Glare then presents the user a menu of available glare index calculations.
After choosing a calculation, glare offers to store the result (usually not useful) or plot the information (but
only for multiple glare angles).

If you are creating a new glarefile, it usually works best to start with a displayed image for reference during
the interrogation.

AUTHOR
Greg Ward

ACKNOWLEDGEMENT
Work on this program was initiated and sponsored by the LESO group at EPFL in Switzerland.

SEE ALSO
dayfact(1), findglare(1), glarendx(1), igraph(1), rpict(1), xglaresrc(1), ximage(1)

RADIANCE 5/2/95 1

GLARENDX(1) GLARENDX(1)

NAME
glarendx - calculate glare index

SYNOPSIS
glarendx -t type [—h] [glarefile]

DESCRIPTION
Glarendx computes the selected glare index type from the given glarefile produced by findglare(1).
Glarendx computes one value for each (indirect illuminance) angle in the input file. If no glarefile is given,
glarendx reads from the standard input. The —h option can be used to remove the information header from
the output.

Glarendx understands the following arguments for type:

guth_vcp Guth Visual Comfort Probability

cie_cgi CIE Glare Index (Einhorn)
ugrUnified Glare Rating
brs_gi BRS Glare Index

dgiDaylight Glare Index
guth_dgr Guth Disability Glare Rating

vert_dir Direct Vertical llluminance
vert_ill Total Vertical Illuminance
vert_ind Indirect Vertical Illuminance

Alternatively, a symbolic or hard link to the program with any of the above names may be used in place of
the type argument.

AUTHORS
Greg Ward, Raphael Compagnon

ACKNOWLEDGEMENT
Work on this program was initiated and sponsored by the LESO group at EPFL in Switzerland.

SEE ALSO
findglare(1), glare(1), igraph(1), rpict(1), xglaresrc(1), ximage(1)

RADIANCE 3/24/94 1

RHOLO(1) RHOLO(1)

NAME
glrad - render a RADIANCE scene using OpenGL

SYNOPSIS
glrad [-w][-b][=s][=S][-V view] rfile [VAR=value ..]

DESCRIPTION
Glrad renders a Radiance scene description in OpenGL. Its syntax and behavior is similar to rad(1) with
the —o option, where the output device is assumed to be an X11 server with GLX extensions.

The —w option turns off warnings. The —s option tells glrad to run rad silently, not echoing oconv(1) com-
mand. The —b option turns off back face visibility (i.e., enables back face culling). This is equivalent to
the —bv option of rpict(1) and rview(1). The —S option turns on full-screen stereo for displays that support
it. (Be sure to run /usr/gfx/setmon(1) or its equivalent to set STR_TOP or STR_BOT, first.) The —v option
may be used to specify a starting view, either by symbolic name as entered in the view assignments in rfile,
or by a complete view specification, enclosed in quotes. If no view is specified, then the first standard view
from rfile is used to start.

Variables permitted in rfile are described in the rad manual page. Additional or overriding assignments
may be given on the command line following rfile.

The view is controlled via the mouse and simple one-character commands, listed below:

(mouse) Modify the current view. The mouse is used to control the current view in the following ways:

CONTROL MOUSEACTION

(none) left Move forward towards cursor position
(none) right Move backward away from cursor position
(none) middle Rotate in place (usually safe)

shift left Orbit left around cursor position

shift right Orbit right around cursor position

shift middle Orbit skyward

cntl middle Orbit earthward

For all movements but rotating in place, the cursor must be placed over some bit of visible
geometry, otherwise the program has no reference point from which to work. It is best to just
experiment with these controls until you learn to fly safely in your model. And if you run into
trouble, the ’I” command is very useful. (See below.)

T+’ Zoom in on the current cursor position. (Beware of repeating keys that go faster than the dis-
play updates.)

Zoom out from the current cursor position.

'’ Return to the last saved view. Each time a new command changes the current view, the last
view is saved, and may be recalled with this command. Multiple uses of the same command
(e.g., rotation, zoom) will save only the view before the first such command. This way, it is
easy to get back to where you were before a sequence of view changes.

h’ Fix the head height. All mouse-controlled view motions will be adjusted so that the head
height does not change (where vertical is determined by the current view up vector).

'H’ Release the head height, allowing it to change again during mouse-controlled movements.

' Print the current view parameters to the standard output. This is useful for finding out where

you are, or for saving specific views in a keyframe file for animations or returning to later.

YA Append the current view to the original rfile. This view will be unnamed, but can be referred
to by number or the user may add a name later with a text editor. The current view number
becomes the last standard view. (See the ’n’ and ’p’ commands, below.)

Go to the next standard view stored in rfile. If the last view is currently displayed, then cycle
to the first one.

RADIANCE 6/10/98 1

RHOLO(1) RHOLO(1)

p Go to the previous standard view stored in rfile. If the first view is currently displayed, then
cycle to the last one.
g’ Quit glrad. This is the normal way to exit the program.
AUTHOR
Greg Ward Larson

BUGS
It would be nice if glrad set the appropriate video format for stereo viewing automatically, but the process
is different on different systems and there is no single, sure-fire way to do it for all systems. On systems
that do not support stereo extensions, the program may be compiled with the -DNOSTEREO option, which
will avoid undefined symbol errors.

SEE ALSO
chmod(1), getinfo(1), Is(1), objview(1), oconv(1), ps(1), rad(1), ranimate(1), rhcopy(1), rholo(1), rpict(1),
rtrace(1), rview(1), setmon(1)

RADIANCE 6/10/98 2

HISTO(1) HISTO(1)

NAME

histo - compute 1-dimensional histogram of N data columns

SYNOPSIS

histo [-c] xmin xmax nbins
histo [-c] imin imax

DESCRIPTION

Histo bins columnular data on the standard input between the given minimum and maximum values. If
three command line arguments are given, the third is taken as the number of data bins between the first two
real numbers. If only two arguments are given, they are both assumed to be integers, and the number of
data bins will be equal to their difference plus one. The bins are always of equal size.

The output is N+1 columns of data (for N columns input), where the first column is the centroid of each
division, and each row corresponds to the frequencies for each column around that value.

If the —c option is present, then histo computes the cumulative histogram for each column instead of the
straight frequencies. The upper value of each bin is printed also instead of the centroid. This may be useful
in computing percentiles, for example.

All input data is interpreted as real values, and columns must be white-space separated. If any value is less
than the minimum or greater than the maximum, it will be ignored on the input. (l.e., it will not contribute
to any frequency count.)

EXAMPLE

To count data values between -1 and 1 in 50 bins:
histo -1 1 50 < input.dat

To count frequencies of integers between 0 and 255:
histo 0 255 < input.dat

AUTHOR

Greg Ward

SEE ALSO

cnt(1), lam(1), neat(1), rcalc(1), tabfunc(1), total(1)

RADIANCE 9/6/96 1

IES2RAD(1) IES2RAD(1)

NAME
ies2rad - convert IES luminaire data to RADIANCE description

SYNOPSIS
ies2rad [options] [input ..]

DESCRIPTION

les2rad converts one or more IES luminaire data files to the equivalent RADIANCE scene description. The
light source geometry will always be centered at the origin aimed in the negative z direction, with the 0
degree plane along the x axis. Usually, two output files will be created for every input file, one scene file
(with a ".rad" suffix) and one data file (with a ".dat" suffix). If the IES input file includes tilt data, then
another data file will be created (with a "+.dat" suffix). If the —s option is used, the scene data will be sent
to the standard output instead of being written to a file. Since the data file does not change with other
options to ies2rad, this is a convenient way to specify different lamp colors and multipliers inline in a scene
description. If the —g option is used, then an octree file will be created (with the ".oct" suffix). The root
portion of the output file names will be the same as the corresponding input file, unless the —o option is
used. The output files will be created in the current directory (no matter which directory the input files
came from) unless the —I or —p options are used.

les2rad assigns light source colors based on information in a lamp lookup table. Since most lamps are dis-
tinctly colored, it is often desirable to override this lookup procedure and use a neutral value that will pro-
duced color-balanced renderings. In general, it is important to consider lamp color when an odd assortment
of fixture types is being used to illuminate the same scene, and the rendering can always be balanced by
pfilt(1) to a specific white value later.

-1 libdir Set the library directory path to libdir. This is where all relative pathnames will begin for out-
put file names. For light sources that will be used by many people, this should be set to some
central location included in the RAYPATH environment variable. The default is the current
working directory.

-p prefdir Set the library subdirectory path to prefdir. This is the subdirectory from the library where all
output files will be placed. It is often most convenient to use a subdirectory for the storage of
light sources, since there tend to be many files and placing them all in one directory is very
messy. The default value is the empty string.

-0 outname
Set the output file name root to outname. This overrides the default output file name root
which is the same as the input file. This option may be used for only one input file, and is
required when reading data from the standard input.

-S Send the scene information to the standard output rather than a separate file. This is appropri-
ate when calling ies2rad from within a scene description via an inline command. The data
file(s) will still be written based on the output file name root, but since this information is unaf-
fected by command line options, it is safe to have multiple invocations of ies2rad using the
same input file and different output options. The —s option may be used for only one input file.

-dunits
Output dimensions are in units, which is one of the letters *'m’, °c’, ’f’, or ’i’ for meters, cen-
timeters, feet or inches, respectively. The letter specification may be followed by a slash (’/”)
and an optional divisor. For example, —dm/1000 would be millimeters. The default output is
in meters, regardless of the original units in the IES input file. Note that there is no space in
this option.

-irad Ignore the crude geometry given by the IES input file and use instead an illum sphere with
radius rad. This option may be useful when the user wishes to add a more accurate geometric
description to the light source model, though this need is obviated by the recent LM-63-1995
specification, which uses MGF detail geometry. (See —g option below.)

-0 If the IES file contains MGF detail geometry, compile this geometry into a separate octree and
create a single instance referencing it instead of including the converted geometry directly in

RADIANCE 6/14/96 1

IES2RAD(1) IES2RAD(1)

the Radiance output file. This can result in a considerable memory savings for luminaires
which are later duplicated many times in a scene, though the appearance may suffer for certain
luminaires since the enclosed glow sources will not light the local geometry as they would oth-
erwise.

-f lampdat Use lampdat instead of the default lamp lookup table (lamp.tab) to map lamp names to xy
chromaticity and lumen depreciation data. It is often helpful to have customized lookup tables
for specific manufacturers and applications.

-t lamp Use the given lamp type for all input files. Normally, ies2rad looks at the header lines of the
IES file to try and determine what lamp is being used in the fixture. If any of the lines is
matched by a pattern in the lamp lookup table (see the -f option above), that color and depreci-
ation factor will be used instead of the default (see the -c and -u options). The lamp specifica-
tion is also looked up in the lamp table unless it is set to "default”, in which case the default
color is used instead.

-c red grn blu
Use the given color if the type of the lamp is unknown or the -t option is set to "default”. If
unspecified, the default color will be white.

-u lamp Set the default lamp color according to the entry for lamp in the lookup table (see the -f
option). This is the color that will be used if the input specification does not match any lamp
type patterns. This option is used instead of the -c option.

-m factor Multiply all output quantities by factor. This is the best way to scale fixture brightness for dif-
ferent lamps, but care should be taken when this option is applied to multiple files.

EXAMPLE

To convert a single IES data file in inches with color balanced output and 15% lumen depreciation, creating
the files "fluorOl.rad" and "fluor01.dat" in the current directory:

ies2rad -di -t default -m .85 fluorQ1l.ies

To convert three IES files of various types to tenths of a foot and put them in the library "/usr/local/lib/ray"
subdirectory "source/ies":

ies2rad -df/10 -I /usr/local/lib/ray -p source/ies ies01 ies02 ies03
To convert a single file and give the output a different name:

ies2rad -o fluorescent ies03

ENVIRONMENT

RAYPATH directories to search for lamp lookup table

AUTHOR

BUGS

Greg Ward

In pre-1991 standard IES files, all header lines will be examined for a lamp table string match. In
post-1991 standard files, only those lamps with the [LAMP] or [LAMPCAT] keywords will be searched.
The first match found in the file is always the one used. This method of assigning colors to fixtures is less
than perfect, and the 1ES would do well to include explicit spectral information somehow in their specifica-
tion.

The IESNA LM-63 specification prior to 1995 provided three basic source shapes, rectangular, round, and
elliptical. The details of these shapes is vague at best. Rectangular sources will always be rectangular, but
ies2rad will approximate round sources as spherical if the height is close to or greater than the width and
length, and as a ring otherwise. Elliptical sources are treated the same as round sources. The 1995 stan-
dard rectifies this problem by including detailed luminaire geometry as MGF data, though nothing in the
standard requires manufacturers to provide this information.

RADIANCE 6/14/96 2

IES2RAD(1) IES2RAD(1)

SEE ALSO
mgf2rad(1), oconv(1), pfilt(1), rad2mgf(1), rpict(1), xform(1)

RADIANCE 6/14/96 3

IGRAPH(1) IGRAPH(1)

NAME
igraph - interactive graphing program

DESCRIPTION
Igraph is a crude interactive program for creating line and scatter plots. Provisions for reading and writing
graph files as well as changing variables and getting output are provided from a menu.

Graph files and variables are as described in bgraph(1).

AUTHOR
Greg Ward

BUGS
There is no mechanism provided for undefining a variable.

SEE ALSO
bgraph(1), calc(1), impress(1), metafile(5), mx80(1), mt1601(1), t4014(1)

RADIANCE 6/24/98 1

IMAGEW(1) IMAGEW(1)

NAME
imagew - output metafile to Apple Imagewriter

SYNOPSIS
imagew [—c | -r] file ..

DESCRIPTION
Imagew reads each metafile file in sequence and converts it to output suitable for the Apple Imagewriter
dot-matrix printer. If the option c is specified, the input files are only conditioned for output, ie. expanded
and sorted (see pexpand and psort). This is useful if many copies of the same output is desired. If the
option r is instead specified, the input is assumed already to be conditioned. If no input files are specified,
the standard input is read.

-C Condition the input only.
-r Input is already conditioned, output only.
EXAMPLE

To print the plot file example.plt:
bgraph example.plt | output imagew

FILES
see pexpand(1) and psort(1)

AUTHOR
Greg Ward

SEE ALSO
bgraph(1), cv(1), igraph(1), impress(1), mx80(1), output(1), pexpand(1), psort(1)

RADIANCE 6/24/98 1

IMPRESS(1) IMPRESS(1)

NAME

impress - convert metafile to imPress language for imagen
SYNOPSIS

impress [-c | -r] file ..
DESCRIPTION

Impress reads each metafile file in sequence and converts it to output suitable for the imagen line of print-
ers. If the option c is specified, the input files are only conditioned for output, ie. expanded (see pexpand).
This is useful if many copies of the same output is desired. If the option r is instead specified, the input is
assumed already to be conditioned. If no input files are specified, the standard input is read.

-C Condition the input only.
-r Input is already conditioned, output only.
EXAMPLE

To print the plot file example.plt to the Impress printer ip4:
bgraph example.plt | impress | Ipr -P ip4

FILES
see pexpand(1)

AUTHORS
William LeFebvre and Greg Ward

SEE ALSO
bgraph(1), igraph(1), imagew(1), mx80(1), t4014(1)

RADIANCE 6/24/98 1

LAM(L) LAM()

NAME
lam - laminate lines of multiple files

SYNOPSIS
lam [-tC] inputl input2 ..

DESCRIPTION
Lam simply joins lines from multiple inputs, separating them with the given tab character (TAB by default).
An input is either a stream or a command. Commands are given in quotes, and begin with an exclamantion
point (’!’). If the inputs do not have the same number of lines, then shorter files will stop contributing to
the output as they run out.

A hyphen (’-’) by itself can be used to indicate the standard input.

EXAMPLE
To join files outputl and output2, separated by a comma:

lam -t, outputl output?
To join a file with line numbers (starting at 0) and its reverse:
cnt ‘we -l <lam.c* | lam - -t: lam.c -t ’tail -r lam.c’

AUTHOR
Greg Ward

SEE ALSO
cnt(1), neat(1), rcalc(1), tabfunc(l), total(1)

RADIANCE 718/97 1

LAMPCOLOR(1) LAMPCOLOR(1)

NAME
lampcolor - compute spectral radiance for diffuse emitter

SYNOPSIS
lampcolor [lamptable]

DESCRIPTION
Lampcolor is an interactive program for computing the appropriate color for a diffuse emitter. From the
total lumen output and a simple description of the fixture geometry, the radiance for a diffuse fixture is cal-
culated. Since most light fixtures are not really diffuse, the preferred method is to use luminaire distribu-
tion data (see ies2rad(1)).

A table of lamp colors and depreciation factors is used to get the color for a specific lamp type. If "white"
is specified, the lamp will be uncolored. This is probably preferable for scenes with only a single variety of
lamp in order to produce color-balanced images.

ENVIRONMENT
RAYPATH Directories to check for lamp table

FILES
lamp.tab Default lamp lookup table

AUTHOR
Greg Ward

ACKNOWLEDGEMENT
Work on this program was initiated and sponsored by the LESO group at EPFL in Switzerland.

SEE ALSO
ies2rad(1)

RADIANCE 11/15/93 1

LOOKAMB(L) LOOKAMB(1)

NAME
lookamb - examine ambient file values

SYNOPSIS
lookamb [=d][-r][-h] [ambfile]

DESCRIPTION
Lookamb examines an ambient file produced by rpict(1), rtrace(1), or rview(1). The default mode prints
the position, direction, level, weight, radius, value, position gradient and direction gradient for each stored
ambient value preceded by a label appropriate for human interpretation. The —d option prints the same
quantities in 18 columns without any expanatory text, and is more appropriate as input to another program.

The —r option performs the reverse conversion, taking the output of lookamb and reproducing the original
ambient file on the standard output.

The —h option causes lookamb not to print out the header information on the output, or not to expect it on
the input with the —r option.

If no file is given, lookamb reads from the standard input.

NOTES
Before release 2.2 of Radiance, ambient files were in a machine-dependent format. Since that is no longer
the case, ambient files can now be moved freely between machines without any conversions. Thus, the
only reason to use lookamb now is to examine the contents of an ambient file.

AUTHOR
Greg Ward

SEE ALSO
getinfo(1), oconv(1), pfilt(1), pinterp(1), rpict(1), rtrace(1), rview(1)

RADIANCE 11/15/93 1

MACBETHCAL(1) MACBETHCAL(1)

NAME
macbethcal - compute color compensation based on measured Macbeth chart

SYNOPSIS
macbethcal [—d debug.pic][—p xul yul xur yur xll yll xIr ylr] scannedin.pic [calibout.cal]
macbethcal —c [—d debug.pic] [measured.xyY [calibout.cal]]

DESCRIPTION
Macbethcal takes a scanned image or measurement set of a Macbeth ColorChecker ™ color rendition chart
and computes a color mapping function suitable as input to pcomb(1).

In the first form, macbethcal takes a scanned image of a Macbeth chart that has been converted into a Radi-
ance picture using a fixed procedure. When used properly as input to pcomb, the computed calibration file
will adjust the brightness and color of any similarly scanned and converted image so as to best match the
original. If the lighting conditions are carefully controlled (as in the case of a flatbed scanner), it is even
possible to get reliable reflectance values this way, at least within 10% or so. The input picture is named on
the command line. The output calibration file will be written to the standard output if no file name is given
on the command line.

In the second form, the input is from a file containing measured values for each Macbeth color. This file
must contain entries of the form:

N X y Y

Where N is the number of the corresponding Macbeth color. (See back of ColorChecker chart for color
names and indexing, but it basically starts from the upper left with 1 and proceeds in English text order to
the lower right, which is 24.) The values x, y and Y are the 1931 CIE (x,y) chromaticity coordinates fol-
lowed by the luminance for that color, which can be in any units. If a white value is known (i.e. maximum
output level), then it may be given as entry number 0. The entries may be in any order, and comments may
be included delimited by a pound sign (’#’) and continuing to the end of line. It is recommended that mea-
surements be done for all 24 colors, but the only required entries are the 6 neutral values on the bottom row
of the chart.

Computing a mapping from measured colors is usually more convenient when calibrating a particular out-
put device. This is accomplished by printing the picture macbeth_spec.pic (which may be found in the
standard RADIANCE library directory in the lib subdirectory) and measuring the output with a chroma
meter or spectrophotometer.

For a scanned image, the locations of the 24 Macbeth patches in the input picture must be known. If the
chart borders are not at the edges of the input picture, or the chart has been reversed or rotated or is uncen-
tered or at an oblique angle, then it is necessary to specify the pixel locations of the corners of the chart
with the —p option. The corner postions (x,y pixel addresses as given by the ximage(1) "p" command) are
ordered on the command line: upper-left, upper-right, lower-left, lower-right (i.e. English text ordering).
These coordinates should be the outside corner positions of the following patches:

upper-left = 1. dark skin
upper-right = 6. bluish green
lower-left =19. white
lower-right = 24. black

If the chart has been flipped or rotated, simply give the pixel positions of the appropriate patch corners,
wherever they are in the image. (Note: if the Radiance picture has been flipped or rotated with pflip(1) or
protate(1), ximage will report the original pixel positions if the —c option was not used by the reorienting
program(s). This will be wrong, so be sure to use the —c option.) Macbethcal can handle a chart with any
orientation or perspective warping if the corner coordinates are given correctly. The debug picture output is
the best way to check for consistency. (See the —d option, below.)

The —d option may be used to specify an additional output file, which will be a picture comparing the
scanned image processed according to the computed mapping against the standard Macbeth colors. It is a

RADIANCE 1/16/97 1

MACBETHCAL(1) MACBETHCAL(1)

good idea to use the debug option to check that the color patches are being located correctly, and to see how
well macbethcal does at matching colors. The center of each patch will show the target color; the left side
of each patch will show the original color, and the right side will show the corrected value. If the match
works well, the debug picture should have a sort of "notch on the left" look in each patch. Macbeth colors
that could not be matched because they were out of gamut on this device are indicated with diagonal lines
drawn through the associated target colors.

METHOD
Macbethcal computes the color mapping in two stages. The first stage uses the six neutral color patches at
the bottom of the Macbeth chart to compute a piecewise linear approximation to the brightness mapping of
each RGB primary. The second stage looks at all the colors that are within the device’s gamut to compute a
least-sqaures fit for a linear color transformation from the measured space into the standard Radiance RGB
space (as defined by the three primaries in src/common/color.h).

Thanks to the nature of inverse mappings, this method should work either for converting scanned data to
match the original, or for preconditioning pictures to be sent to specific output devices. In other words, the
same calibration file works either for correcting scanned images OR precorrecting images before printing.

A warning is printed if some unsaturated colors are determined to be out of gamut, as this may indicate a
poor rendition or improper picture alignment. The debug picture will show which colors were excluded by
drawing diagonal lines through their entries.

NOTE
It is very important that the same settings be applied when scanning or printing other images to be cali-
brated with the computed file. In particular, all exposure adjustments should be fixed manually, and no
tweaking of the settings should be done along the way. The final result will be best if the original scanned
image is not too far off from what it should be. In the case of slide and negative scanners, it is best to apply
the recommended calibration file for the type of film used, so long as this calibration is fixed and not
adjusted on a per-image basis.

CHART AVAILABILITY
The Macbeth chart is available at most photographic supply stores, or may be ordered directly from Mac-
beth:

Macbeth

Munsell Color

405 Little Britain Rd.

New Windsor, NY 12553-6148
tel. 1-800-622-2384 (USA)

fax. 1-914-561-0267

The chart sells for under $50 US at the time of this writing.

EXAMPLES
To compute a calibration for a FunkyThing scanner and check the results:

ra_tiff -r mbscan.tif mbscan.pic
macbethcal -d debug.pic mbscan.pic FunkyThing.cal
ximage debug.pic

To apply this computed calibration to another scanned image:
ra_tiff -r another.tif | pcomb -f FunkyThing.cal - > another_calib.pic

To compute a calibration file for the BigWhiz film recorder, after taking measurements of a slide made
from macbeth_spec.pic:

macbethcal -c macbeth_spec.xyY BigWhiz.cal

To prepare a picture prior to output on the same film recorder:

RADIANCE 1/16/97 2

MACBETHCAL(1)

pcomb -f BigWhiz.cal standard.pic > toprint.pic
To use pcond(1) to also adjust the image for human response:
pcond -f BigWhiz.cal -h standard.pic > toprint.pic

AUTHOR
Greg Ward
Paul Heckbert supplied code for perspective projective mapping

SEE ALSO
calc(1), pcomb(1), pcond(1), pfilt(1), ximage(1)

RADIANCE 1/16/97

MACBETHCAL(1)

META2TGA(L) META2TGA(L)

NAME
meta2tga - convert metafile to Targa image format

SYNOPSIS
meta2tga [—c | -r][—x width][-y height][-m minrad][—o outname] file ..

DESCRIPTION
Meta2tga reads each metafile file in sequence and converts it to a compressed, color-mapped Targa file.
The result is sent to the standard output (which must be redirected) unless the —o option is used. The argu-
ment to the —o option specifies the base file name, to which a page number and ".tga" is added as a suffix.
Note that this option must be present in order to produce more than a single page of output.

The default output resolution is 400 by 400, but a different resolution can be given with the —x and -y
options.

The —m option can be used to set a minimum value for the line radius in pixels. This may be helpful for
improving the readability of high resolution output. The default value is 0, which allows lines of one pixel
thickness.

If the option —c is specified, the input files are only conditioned for output, ie. expanded (see pexpand).
This is useful if many copies of the same output is desired. If the option —r is instead specified, the input is
assumed already to be conditioned. If no input files are specified, the standard input is read.

EXAMPLE
To convert the plots exampl.plt and examp2.plt to 1024x1024 Targa files:

bgraph exampl.plt examp2.plt | meta2tga -0 examp -x 1024 -y 1024

FILES
see pexpand(1) and psort(1)

AUTHOR
Greg Ward

SEE ALSO
bgraph(1), igraph(1), imagew(1), mx80(1), pexpand(1), psort(1), ra_t8(1), t4014(1)

RADIANCE 6/24/98 1

MGF2META(1) MGF2META(1)

NAME
mgf2meta - convert Materials and Geometry Format file to Metafile graphics

SYNOPSIS
mgf2meta [-t threshold] {X|y|z} xmin xmax ymin ymax zmin zmax [input ..]

DESCRIPTION
Mgf2meta converts one or more Materials and Geometry Format (MGF) files to a 2-D orthographic projec-
tion along the selected axis in the metafile(1) graphics format. All geometry is clipped to the specified
bounding box, and the resulting orientation is as follows:

Projection Orientation

X Y-axis right, Z-axis up
y Z-axis right, X-axis up
z X-axis right, Y-axis up

If multiple input files are given, the first file prints in black, the second prints in red, the third in green and
the fourth in blue. If more than four input files are given, they cycle through the colors again in three other
line types: dashed, dotted and dot-dashed.

The —t option may be used to randomly throw out line segments that are shorter than the given threshold
(given as a fraction of the plot width). Segments are included with a probability equal to the square of the
line length over the square of the threshold. This can greatly reduce the number of lines in the drawing
(and therefore improve the drawing speed) with only a modest loss in quality. A typical value for this
parameter is 0.005.

All MGF material information is ignored on the input.

EXAMPLE
To project two MGF files along the Z-axis and display them under X11:

mgf2meta z 0 10 0 15 0 9 buildingl.mgf building2.mgf | x11meta -r
To convert a RADIANCE scene to a line drawing in RADIANCE picture format:
rad2mgf scene.rad | mgf2meta x ‘getbbox -h scene.rad* | meta2tga | ra_t8 -r > scene.pic

AUTHOR
Greg Ward

SEE ALSO
getbbox(1), meta2tga(l), metafile(5), mgf2rad(1), pflip(1), protate(1), psmeta(l), ra_t8(1), rad2mgf(1),
t4014(1), x11meta(1)

MGF web site "http://radsite.lbl.gov/mgf/HOME.html"

RADIANCE 11/20/95 1

MGF2RAD(1) MGF2RAD(1)

NAME

mgf2rad - convert Materials and Geometry Format file to RADIANCE description

SYNOPSIS

mgf2rad [-m matfile][—-e mult][—g dist] [input ..]

DESCRIPTION

Mgf2rad converts one or more Materials and Geometry Format (MGF) files to a RADIANCE scene
description. By definition, all output dimensions are in meters. The material names and properties for the
surfaces will be those assigned in MGF. Any materials not defined in MGF will result in an error during
translation. Light sources are described inline as IES luminaire files, and mgf2rad calls the program
ies2rad(1) to translate these files. If an IES file in turn contains an MGF description of the local fixture
geometry, this may result in a recursive call to mgf2rad, which is normal and should be transparent. The
only side-effect of this additional translation is the appearance of other RADIANCE scene and data files
produced automatically by ies2rad.

The —m option may be used to put all the translated materials into a separate RADIANCE file. This is not
always advisable, as any given material name may be reused at different points in the MGF description, and
writing them to a separate file loses the contextual association between materials and surfaces. As long as
unique material names are used throughout the MGF description and material properties are not redefined,
there will be no problem. Note that this is the only way to get all the translated materials into a single file,
since no output is produced for unreferenced materials; i.e. translating just the MGF materials does not
work.

The —e option may be used to multiply all the emission values by the given mult factor. The —g option may
be used to establish a glow distance (in meters) for all emitting surfaces. These two options are employed
principally by ies2rad, and are not generally useful to most users.

EXAMPLE

To translate two MGF files into one RADIANCE materials file and one geometry file:
mgf2rad -m materials.rad buildingl.mgf building2.mgf > building1+2.rad
To create an octree directly from two MGF files and one RADIANCE file:

oconv ’\Imgf2rad materials.mgf scene.mgf’ source.rad > scene.oct

FILES
tmesh.cal Used to smooth polygonal geometry
*.rad RADIANCE source descriptions created by ies2rad
*.dat RADIANCE source data created by ies2rad
source.cal Used for IES source coordinates

AUTHOR
Greg Ward

SEE ALSO

ies2rad(1), mgf2meta(1), obj2rad(1), oconv(1), rad2mgf(1), xform(1)
MGF web site "http://radsite.lbl.gov/mgf/HOME.html"

RADIANCE 4/12/95 1

MKILLUM(1) MKILLUM(1)

NAME
mkillum - compute illum sources for a RADIANCE scene

SYNOPSIS
mkillum [rtrace options] octree [< file ..]
mkillum [rtrace options] —defaults

DESCRIPTION
Mkillum takes a prepared RADIANCE scene description and an octree and computes light source distribu-
tions for each surface, replacing them with secondary sources whose contributions can be computed more
efficiently by rpict(1) and rview(1). This type of optimization is most useful for windows and skylights
which represent concentrated sources of indirect illumination. Mkillum is not appropriate for very large
sources or sources with highly directional distributions. These are best handled respectively by the ambient
calculation and the secondary source types in RADIANCE.

The arguments to mkillum are passed directly to rtrace(1), which is used to compute the light distributions
for the input surfaces. These surfaces can be any combination of polygons, spheres and rings. Other sur-
faces may be included, but mkillum cannot compute their distributions.

By default, mkillum reads from its standard input and writes to its standard output. It is possible to specify
multiple input files in a somewhat unconventional fashion by placing a lesser-than symbol (’<”) before the
file names. (Note that this character must be escaped from most shells.) This is necessary so mkillum can
tell where the arguments to rtrace(1) end and its own input files begin.

VARIABLES
Mkillum has a number of parameters that can be changed by comments in the input file of the form:

#@mkillum variable=value option switch{+|-} ..

String or integer variables are separated from their values by the equals sign (’="). Options appear by them-
selves. Switches are followed either by a plus sign to turn them on or a minus sign to turn them off.

Parameters are usually changed many times within the same input file to tailor the calculation, specify dif-
ferent labels and so on. The parameters and their meanings are described below.

o=string
Set the output file to string. All subsequent scene data will be sent to this file. If this appears
in the first comment in the input, nothing will be sent to the standard output. Note that this is
not recommended when running mkillum from rad(1), which expects the output to be on the
standard output.

m=string
Set the material identifier to string. This name will be used not only as the new surface modi-
fier, but it will also be used to name the distribution pattern and the data files. The distribution
name will be string plus the suffix ".dist". The data file will be named string plus possibly an
integer plus a ".dat" suffix. The integer is used to avoid accidently writing over an existing file.
If overwriting the file is desired, use the f variable below.

f=string
Set the data file name to string. The next data file will be given this name plus a ".dat" suffix.
Subsequent files will be named string plus an integer plus the ".dat" suffix. An existing file
with the same name will be clobbered. This variable may be unset by leaving off the value.
(See also the m variable above.)

a Produce secondary sources for all of the surfaces in the input. This is the default.

e=string
Produce secondary sources for all surfaces except those modified by string. Surfaces modified
by string will be passed to the output unchanged.

RADIANCE 10/6/95 1

MKILLUM(1) MKILLUM(1)
i=string
Only produce secondary sources for surfaces modified by string.
n Do not produce any secondary sources. All input will be passed to the output unaffected.
b=real
Do not produce a secondary source for a surface if its average brightness (radiance) is less than
the value real.
c={dlaln}
Use color information according to the given character. If the character is d, then color infor-
mation will be used in three separate data files and the distribution will be fully characterized
in terms of color. If the character is a, then only the average color is computed and the distri-
bution will not contain color information. If the character is n, even the average distribution
color will be thrown away, producing secondary sources that are completely uncolored. This
may be desirable from a color-balancing point of view.
d=inte-
ger
Set the number of direction samples per projected steradian to integer. The number of direc-
tions stored in the associated data file will be approximately this number multiplied by pi for
polygons and rings, and by 4pi for spheres. If integer is zero, then a diffuse source is assumed
and no distribution is created.
s=inte-
ger
Set the number of ray samples per direction to integer. This variable affects the accuracy of the
distribution value for each direction as well as the computation time for mkillum.
I{+|-} Switch between light sources and illum sources. If this switch is enabled (I+), mkillum will
use the material type "light" to represent surfaces. If disabled (I-), mkillum will use the mate-
rial type "illum™ with the input surface modifier as its alternate material. The default is I-.
AUTHOR
Greg Ward
ACKNOWLEDGEMENT

Work on this program was initiated and sponsored by the LESO group at EPFL in Switzerland.

SEE ALSO

oconv(1), rad(1), rpict(1), rtrace(1), rview(1)

RADIANCE

10/6/95 2

MX80(1) MX80(1)

NAME
mx80 - output metafile to Epson mx-80

SYNOPSIS
mx80 [—c | -r] file ..

DESCRIPTION
Mx80 reads each metafile file in sequence and converts it to output suitable for the Epson line of printers,
specifically the mx-80 and fx-80. If the option c is specified, the input files are only conditioned for output,
ie. expanded and sorted (see pexpand and psort). This is useful if many copies of the same output is
desired. If the option r is instead specified, the input is assumed already to be conditioned. If no input files
are specified, the standard input is read.

-C Condition the input only.
-r Input is already conditioned, output only.
EXAMPLE

To print the plot file test.plt:
bgraph test.plt | output mx80
FILES
see pexpand(1) and psort(1)
AUTHOR
Greg Ward

BUGS
Currently, different character widths and densities are not supported.

SEE ALSO
bgraph(1), cv(1), igraph(1), impress(1), output(1), pexpand(1), psort(1)

RADIANCE 6/24/98 1

NEAT(1) NEAT(1)

NAME
neat - neaten up output columns

SYNOPSIS
neat [format]

DESCRIPTION
Neat reads from its standard input and neatens up columns separated by white space using the specified for-
mat. The format is a string consisting of a positive integer followed by an alignment character and another
integer. The alignment character is usually a decimal point (.”), but it can be any non-digit.

The alignment character is used as the central point of each column. The total column field width will be
the number to the left of the alignment character plus one for the alignment character itself plus the number
to the right of the alignment character.

If a field does not contain the alignment character, it will be printed to the left of where the alignment char-
acter would have appeared. If a field is too long to print within the specified format, the entire field will be
printed and that row will not be aligned with the rest.

The default format is "8.8".

EXAMPLE
To examine a file with columns of numbers:

neat 10.8 < input | more

BUGS
Columns wider than the total width of the format specification will be printed without any separating white
space.

The program does not do anything special with tabs on the input.

AUTHOR
Greg Ward

SEE ALSO
cnt(1), lam(1), rcalc(1), total(1)

RADIANCE 11/15/93 1

NORMPAT (1) NORMPAT(1)

NAME
normpat - normalize RADIANCE pictures for use as patterns.

SYNOPSIS
normpat [v][=b][—f][—-r maxres] picture ..

DESCRIPTION
Normpat normalizes one or more RADIANCE pictures to an average brightness of 1.0 and optionally
removes fundamental frequencies and blends the edges of the image. The original images are overwritten
during this process, and it is recommended that the program work on copies of the pictures for this reason.

The —r option can be used to set the maximum horizontal or vertical resolution of the final result, which
should not be greater than 256 for most patterns (due to the associated memory burden during rendering).
The —f option uses a Fourier transform to remove the lowest frequencies from the image, reducing the
noticeability of pattern repitition. The —b option can be used to blend the edges of the image so that when
it is tiled, the seams are less apparent. The —v option turns on the verbose flag, which prints on the stan-
dard output progress messages as the script runs.

Normpat is a shell script that makes calls to other RADIANCE programs that do the actual work.

AUTHOR
Greg Ward

SEE ALSO
getinfo(1), pcomb(1), pcompos(1), pfilt(1), pflip(1), protate(1), psign(1), ra_bn(1), ra_pr(1), ra_t8(1),
ra_t16(1), rpict(1)

RADIANCE 11/15/93 1

NORMTIFF(L) NORMTIFF(1)

NAME
normtiff - tone-map and convert RADIANCE picture or SGILOG TIFF to RGB TIFF

SYNOPSIS
normtiff [options] input output.tif

DESCRIPTION
Normtiff prepares a Radiance picture or SGILOG (high dynamic range) TIFF for output to a display or hard
copy device. If the dynamic range of the scene exceeds that of the display (as is usually the case), normtiff
will compress the dynamic range of the picture such that both dark and bright regions are visible. In addi-
tion, certain limitations in human vision may be mimicked in order to provide an appearance similar to the
experience one might have in the actual scene.

Output is always an uncompressed RGB TIFF, which must be named on the command line along with the
input file. If the input file has a ".tif" or ".tiff" extension, normtiff attempts to read it as a TIFF. Otherwise,
normtiff first tries opening it as a RADIANCE picture, only opening it as a TIFF if it fails header inspec-
tion. (See the getinfo(1) program.) If the input is neither a RADIANCE picture nor an SGILOG-encoded
TIFF, the program reports an error and exits.

The following command line options are understood. Since this program is very similar to pcond(1), sev-
eral of the switches are identical.

-b Toggle 8-bit black and white (grayscale) TIFF output. If the input is a 16-bit SGILOG lumi-
nance-only TIFF, this switch is automatically selected. Otherwise, the output defaults to 24-bit
RGB.

-h Mimic human visual response in the output. The goal of this process is to produce output that

correlates strongly with a person’s subjective impression of a scene. This switch turns on both
the —s and —c switches, described below.

-S Toggle the use of the human contrast sensitivity function in determining the exposure for the
image. A darker scene will have relatively lower exposure with lower contrast than a well-lit
scene.

-C Toggle mesopic color correction. If parts of the image are in the mesopic or scotopic range

where the cone photoreceptors lose their efficiency, this switch will cause a corresponding loss
of color visibility in the output and a shift to a scotopic (blue-dominant) response function.

-l Toggle the use of a linear response function versus the standard dynamic range compression
algorithm. This may make some parts of the resulting image too dark or too bright to see.

-u Ldmax Specifies the top of the luminance range for the target output device. That is, the luminance (in
candelas/m™2) for an output pixel value of (R,G,B)=(255,255,255). This parameter affects tone
mapping only when the —s switch is on. The default value is 100 cd/m™2.

-d Lddyn Specifies the dynamic range for the target output device, which is the ratio of the maximum
and minimum usable display luminances. The default value is 32, which is typical for CRT
monitors.

-p Xr yr xg yg xb yb xw yw
Specifies the RGB primaries for the target output device. These are the 1931 CIE (x,y) chro-
maticity values for red, green, blue and white, respectively.

-g gamma Specifies the output device gamma correction value. The default value is 2.2, which is appro-
priate for most CRT monitors. (A value of 1.8 is common in color prepress and color print-
ers.)

EXAMPLES
To convert a RADIANCE picture to an 8-bit grayscale TIFF:

normtiff -b scene.pic sceneb.tif

To condition an SGILOG TIFF for a particular film recorder with known color primaries, dynamic range
and gamma response:

RADIANCE 2/25/99 1

NORMTIFF(L) NORMTIFF(1)

pcond -d 50 -g 2.5 -p .580 .340 .281 .570 .153 .079 .333 .333 orig.tif filmrgb.tif
To simulate human visual response on a monitor with known maximum luminance:
normtiff -h -u 80 scene.pic sceneh.tif

REFERENCE
Greg Ward Larson, Holly Rushmeier, Christine Piatko, “A Visibility Matching Tone Reproduction Operator
for High Dynamic Range Scenes,” IEEE Transactions on Visualization and Computer Graphics , Decem-
ber 1997.

http://positron.cs.berkeley.edu/gwlarson/pixformat/

AUTHOR
Greg Ward Larson

ACKNOWLEDGMENT
This work was supported by Silicon Graphics, Inc.

SEE ALSO
getinfo(1), pcond(1), pflip(1), pvalue(1), protate(1), ra_xyze(1), rpict(1), ximage(1)

RADIANCE 2/25/99 2

OBJ2MESH(1) OBJ2MESH(1)

NAME
obj2mesh - create a compiled RADIANCE mesh file from Wavefront .OBJ input

SYNOPSIS
obj2mesh [—a matinput][—n objlim J[—r maxres][-w] [input.obj [output.rtm]]

DESCRIPTION
Obj2mesh reads a Wavefront .OBJ file from input.obj (or the standard input) and compiles it into a RADI-
ANCE triangle mesh, which is sent to output.rtm (or standard output). Any RADIANCE material descrip-
tions included via one or more —a options will be compiled and stored in the mesh as well. This mesh may
be included in a RADIANCE scene description via the mesh primitive, thus:

mod mesh id

1+ output.rtm [xform args]
0

0

The syntax and semantics are identical to the RADIANCE instance primitive. If mod is "void", then the
stored mesh materials will be applied during rendering. Otherwise, the given material will be substituted
on all the mesh surfaces.

The —n option specifies the maximum surface set size for each voxel. Larger numbers result in quicker
mesh generation needing less memory, but potentially slower rendering. Smaller values may produce faster
renderings, since the default number (15) is on the high side to reduce the compiled mesh octree size. Val-
ues below 6 are not recommended, since this is the median valence for a mesh vertex (the number of adja-
cent faces), and smaller values will result in pointless octree subdivision.

The —r option specifies the maximum octree resolution. This should be greater than or equal to the ratio of
the mesh bounding box to the smallest triangle. The default is 16384.

The —w option suppresses warnings.

Although the mesh file format is binary, it is meant to be portable between machines. The only limitation is
that machines with radically different integer sizes will not work together.

DETAILS
The following Wavefront statements are understood and compiled by obj2mesh.

VXYyzZ A vertex location, given by its Cartesian coordinates. The final mesh position may of course
be modified by the transform arguments given to the mesh primitive in the Radiance scene
description.

vn dx dy dz

A vertex normal vector, given by its three direction components, which will be normalized by
obj2mesh. Normals will be interpolated over the mesh during rendering to produce a smooth
surface. If no vertex normals are present, the mess will appear tesselated. A zero length nor-
mal (i.e., 0 0 0) will generate a syntax error.

vtuv A local vertex texture coordinate. These coordinates will be interpolated and passed to the
"Lu" and "Lv" variables during rendering. Local coordinates can extend over any desired
range of values.

usemtl mname
A material name. The following faces will use the named material, which is taken from the
material definitions in the —a input file(s).

ggname Group association. The following faces are associated with the named group. If no "usemtl"
statement has been encountered, the current group is used for the surface material identifier.

fv1/tl/nl v2/t2/n2 v3/t3/n3 ..
A polygonal face. Polygon vertices are specified as three indices separated by slashes (’/’).
The first index is the vertex location, the second index is the local (u,v) texture coordinate, and
the third index is the vertex surface normal. Positive indices count from the beginning of the

RADIANCE 03/11/03 1

OBJ2MESH(1)

OBJ2MESH(1)

input, where the first vertex position (v statement) is numbered 1, and likewise for the first tex-
ture coordinate and the first surface normal. Negative indices count backward from the current
position in the input, where -1 is the last vertex encountered, -2 is the one before that, etc. An
index of 0 may be used for the vertex texture or normal to indicate none, or these may be left
off entirely. All faces will be broken into triangles in the final mesh. Obj2mesh currently
makes an unsafe assumption that faces are convex, which may result in odd results if they are
not.

All other statement types will be ignored on the input. Statements understood by obj2rad(1) will be
ignored silently; other statements will generate a warning message after translation to indicate how much

was missed.

DIAGNOSTICS

There are four basic error types reported by obj2mesh:

warning - a non-fatal input-related error

fatal - an unrecoverable input-related error

system - a system-related error

internal - a fatal error related to program limitations

consistency - a program-caused error

Most errors are self-explanatory. However, the following internal errors should be mentioned:

Set overflow in addobject (id)
This error occurs when too many surfaces are close together in a scene. Sometimes a dense mesh
can be accommodated by increasing the maximum resolution (by powers of two) using the —r
option, but usually this error indicates something is wrong. Either too many surfaces are lying
right on top of each other, or the bounding cube is inflated from disparate geometry in the input.
Chances are, the face number "id" is near those causing the problem.

Hash table overflow in fullnode
This error is caused by too many surfaces, and there is little hope of compiling this mesh.

EXAMPLE

To create a compiled triangle mesh from the scene file mesh.obj:

oconv mesh.obj mesh.rtm

AUTHOR
Greg Ward

SEE ALSO

gensurf(1), getinfo(1), make(1), obj2rad(1), oconv(1), rpict(1), rview(1), rtrace(1), xform(1)

RADIANCE

03/11/03 2

OBJ2RAD(1) OBJ2RAD(1)

NAME
obj2rad - convert Wavefront .obj file to RADIANCE description

SYNOPSIS
obj2rad [-n][—=f][-m mapfile][-o objname] [input]

DESCRIPTION
Obj2rad converts a Wavefront .obj file to a RADIANCE scene description. The material names for the sur-
faces will assigned based on the mapping rules file given in the —m option. 1f no mapping file is given, the
identifiers given by the "usemtl” statements will be used as the material names. If no "usemtl" statements

are found, the group names (given by the "g" statement) will be used instead. Failing this, the default mate-
rial "white" will be used.

A mapping file contains a list of materials followed by the conditions a surface must satisfy in order to have
that material. For example, if we wanted all faces in the Group "thingy" with texture Map "pine™ to use the
material "wood", and all other surfaces to use the material "default”, we would create the following map-
ping file:

default ;
wood (Group "thingy") (Map "pine™) ;

All faces would satisfy the first set of conditions (which is empty), but only the faces in the Group "thingy"
with texture Map "pine" would satisfy the second set of conditions.

Each rule can have up to one condition per qualifier, and different translators use different qualifiers. In
obj2rad, the valid qualifiers are Material, Map, Group, Object and Face. A condition is either a single
value for a specific attribute, or an integer range of values. (Integer ranges are specified in brackets and
separated by a colon, eg. [-15:27], and are always inclusive.) A semicolon is used to indicate the end of a
rule, which can extend over several lines if necessary.

The semantics of the rule are such that "and" is the implied conjunction between conditions. Thus, it makes
no sense to have more than one condition in a rule for a given qualifier. If the user wants the same material
to be used for surfaces that satisfy different conditions, they simply add more rules. For example, if the
user also wanted faces between 50 and 175 in the Group "yohey" to use "wood", they would add the follow-
ing rule to the end of the example above:

wood (Face [50:175]) (Group "yohey") ;

Note that the order of conditions in a rule is irrelevant. However, the order of rules is very important, since
the last rule satisfied determines which material a surface is assigned.

By convention, the identifier "void" is used to delete unwanted surfaces. A surface is also deleted if it fails
to match any rule. Void is used in a rule as any other material, but it has the effect of excluding all match-
ing surfaces from the translator output. For example, the following mapping would delete all surfaces in
the Object "junk™ except those with the Group name "beige"”, to which it would assign the material
"beige_cloth", and all other surfaces would be "tacky":

tacky ;
void (Object "junk™) ;
beige_cloth (Object "junk™) (Group "beige") ;

The —n option may be used to produce a list of qualifiers from which to construct a mapping for the given
.obj file. This is also useful for determining which materials must be defined when no mapping is used.

The —f option is used to flatten all faces, effectively ignoring vertex normal information. This is sometimes
desirable when a smaller model or more robust rendering is desired, since interpolating vertex normals
takes time and is not always reliable.

The —o option may be used to specify the name of this object, though it will be overriden by any "o"

RADIANCE 6/14/94 1

OBJ2RAD(1)

OBJ2RAD(1)

statements in the input file. If this option is absent, and there are no "o" statements, obj2rad will attempt to
name surfaces based on their group associations.

If no input files are given, the standard input is read.

DETAILS

The following Wavefront statements are understood and translated by obj2rad.

#
f

0

usemap

usemtl

vn

vt

A comment. This statement is passed to the output verbatim. It has no effect.

A polygonal face. If the vertices have associated surface normals, the face will be broken into
quadrilaterals and triangles with the appropriate Radiance textures to interpolate them. Like-
wise, if the face is non-planar, it will be broken into triangles. Each face in the input file is
assigned a number, starting with 1, and this number may be used in the material mapping rules.

Group association. The following faces are associated with the named group(s). These may be
used in the mapping rules, where a rule is matched if there is an association with the named
Group. (l.e. since there may be multiple group associations, any match is considered valid.) If
a mapping file is not used and no "usemtl" statement has been encountered, the main group is
used for the surface material identifier.

Object name. This is used to name the following faces, and may be used in the mapping rules.

A texture map (i.e. Radiance pattern) name. The name may be used in the material mapping
rules, but the indexing of Radiance patterns is not yet supported.

A material name. The name may be used in mapping rules, or will be used as the Radiance
material identifier if no mapping is given.

A vertex, given by its x, y and z coordinates.

A vertex normal, given by its x, y and z direction components. This vector will be normalized
by obj2rad, and an error will result if it has length zero.

A vertex texture coordinate. Not currently used, but will be if we ever get around to supporting
Wavefront textures.

All other statement types will be ignored on the input. A final comment at the end of the Radiance output
file will give some indication of how successful the translation was, since it will mention the number of
statements obj2rad did not recognize.

EXAMPLE

To create a qualifier list for triceratops.obj:

obj2rad -n triceratops.obj > triceratops.qual

To translate triceratops.obj into a RADIANCE file using the mapping triceratops.map:

obj2rad -m triceratops.map triceratops.obj > triceratops.rad

NOTES

Many good and useful Wavefront object files are available by anonymous ftp from "avalon.chi-
nalake.navy.mil" in the /pub/objects/obj directory.

FILES
tmesh.cal
surf.cal

AUTHOR
Greg Ward

SEE ALSO

- used for triangle normal interpolation
- used for quadrilateral normal interpolation

arch2rad(1), ies2rad(1), obj2mesh(1), oconv(1), thf2rad(1), xform(1)

RADIANCE

6/14/94 2

OBJLINE(L) OBJLINE(L)

NAME
objline - create metafile line drawings of RADIANCE object(s)

SYNOPSIS
objline [input ..]

DESCRIPTION
Objline takes one or more RADIANCE scene files and produces four parallel line projections using calls to
rad2mgf(1) and mgf2meta(1). The output must be redirected to a suitable destination for metafile(5) 2-d
graphics, such as x11meta(1) or psmeta(1).

The four projections presented are along the X-axis (displayed in the upper left quadrant), along the Y-axis
(upper right), along the Z-axis (lower left) and an oblique view (lower right). If multiple RADIANCE input
files are given, they are shown in different colors and line styles. (Materials are ignored, so materials files
are best left out.) If no input files are given on the command line, the standard input is read.

EXAMPLES
To create a line drawing of the RADIANCE file "myfile.rad" and display under X11:

objline myfile.rad | x11meta -r &

To create a line drawing of three objects in different colors and send to the printer:
objline objl.rad obj2.rad obj3.rad | psmeta | Ipr

To create a line drawing of a room and convert into a 1024x1024 RADIANCE picture:
objline room.rad | meta2tga -x 1024 -y 1024 | ra_t8 -r > drawing.pic

AUTHOR
Greg Ward

SEE ALSO
meta2tga(1), metafile(5), mgf2meta(1), psmeta(1), ra_t8(1), rad2mgf(1), x11meta(1)

RADIANCE 10/27/95 1

OBJIVIEW(1) OBIVIEW(1)

NAME
objview - view RADIANCE object(s)

SYNOPSIS
objview [—u updirection][rad options] input ..
objview [—g][—u updirection][glrad options] input ..

DESCRIPTION
Objview renders a RADIANCE object interactively using rad(1) or glrad(1). This program is merely a
shell script that adds some light sources to a scene then calls rad(1) or glrad(1) to make an octree and view
the scene interactively.

If the default up vector (+2) is inappropriate for this object, then specify a different one using the —u option
to objview.

Any number of material and scene files may be given, but no in-line commands or standard input.

AUTHOR
Greg Ward Larson

SEE ALSO
glrad(1), oconv(1), rad(1), rview(1)

RADIANCE 6/10/98 1

OCONV(1) OCONV(1)

NAME
oconv - create an octree from a RADIANCE scene description

SYNOPSIS
oconv [—i octree | —b xmin ymin zmin size][-n objlim][-r maxres][-f][-w][-] [input ..]

DESCRIPTION
Oconv adds each scene description input to octree and sends the result to the standard output. Each input
can be either a file name, or a command (enclosed in quotes and preceded by a ‘!”). Similarly, the octree
input may be given as a command preceded by a ‘I’. If any of the surfaces will not fit in octree, an error
message is printed and the program aborts. If no octree is given, a new one is created large enough for all
of the surfaces.

The —b option allows the user to give a bounding cube for the scene, starting at xmin ymin zmin and having
a side length size. If the cube does not contain all of the surfaces, an error results. The —b and —i options
are mutually exclusive.

The —n option specifies the maximum surface set size for each voxel. Larger numbers result in quicker
octree generation, but potentially slower rendering. Smaller values may or may not produce faster render-
ings, since the default number (6) is close to optimal for most scenes.

The —r option specifies the maximum octree resolution. This should be greater than or equal to the ratio of
the largest and smallest dimensions in the scene (ie. surface size or distance between surfaces). The default
is 16384.

The —f option produces a frozen octree containing all the scene information. Normally, only a reference to
the scene files is stored in the octree, and changes to those files may invalidate the result. The freeze option
is useful when the octree file’s integrity and loading speed is more important than its size, or when the
octree is to be relocated to another directory, and is especially useful for creating library objects for the
"instance™ primitive type. If the input octree is frozen, the output will be also.

The —w option suppresses warnings.

A hyphen by itself (’-*) tells oconv to read scene data from its standard input. This also implies the —f
option.

The only scene file changes that do not require octree regeneration are modifications to non-surface param-
eters. If the coordinates of a surface are changed, or any primitives are added or deleted, oconv must be run
again. Programs will abort with a "stale octree” message if they detect any dangerous inconsistencies
between the octree and the input files.

Although the octree file format is binary, it is meant to be portable between machines. The only limitation
is that machines with radically different integer sizes will not work together. For the best results, the -f
option should be used if an octree is to be used in different environments.

DIAGNOSTICS
There are four basic error types reported by oconv:

warning - a non-fatal input-related error
fatal - an unrecoverable input-related error
system - a system-related error
internal - a fatal error related to program limitations
consistency - a program-caused error
Most errors are self-explanatory. However, the following internal errors should be mentioned:

Too many scene files
Reduce the number of scene files by combining them or using calls to xform(1) within files to cre-
ate a hierarchy.

RADIANCE 8/15/95 1

OCONV(1) OCONV(1)

Set overflow in addobject (id)
This error occurs when too many surfaces are close together in a scene. Sometimes a dense scene
can be accommodated by increasing the maximum resolution (by powers of two) using the —r
option, but usually this error indicates something is wrong. Either too many surfaces are lying
right on top of each other, or the bounding cube is inflated from an oversized object or an improper
—b specification. Chances are, the surface "id" is near one of those causing the problem.

Hash table overflow in fullnode
This error is caused by too many surfaces. If it is possible to create an octree for the scene at all, it
will have to be done in stages using the —i option.
EXAMPLE
To add book1, book?2 and a transformed book3 to the octree “scene.oct”:

oconv -i scene.oct book1 book2 \Ixform -rz 30 book3’ > newscene.oct

AUTHOR
Greg Ward

NOTES
In the octree, the names of the scene files are stored rather than the scene information. This means that a
new octree must be generated whenever the scene files are changed or moved. Also, an octree that has been
moved to a new directory will not be able to find scene files with relative pathnames. The freeze option
avoids these problems. make(1) or rad(1) can be used to automate octree creation and maintenance.

SEE ALSO
getbbox(1), getinfo(1), make(1), obj2mesh(1), rad(1), rpict(1), rview(1), rtrace(1), xform(1)

RADIANCE 8/15/95 2

PCOMB(1) PCOMB(1)

NAME
pcomb - combine RADIANCE pictures.

SYNOPSIS
pcomb [-w][-=x xres][=y yres][—ffile][—eexpr] [[-0][—s factor][-crg b] input..]

DESCRIPTION
Pcomb combines equal-sized RADIANCE pictures and sends the result to the standard output. By default,
the result is just a linear combination of the input pictures multiplied by —s and —c coefficients, but an arbi-
trary mapping can be assigned with the —e and —f options. Negative coefficients and functions are allowed,
and pcomb will produce color values of zero where they would be negative.

The variables ro, go and bo specify the red, green and blue output values, respectively. Alternatively, the
single variable lo can be used to specify a brightness value for black and white output. The predefined
functions ri(n), gi(n) and bi(n) give the red, green and blue input values for picture n. To access a pixel that
is nearby the current one, these functions also accept optional x and y offsets. For example, ri(3,-2,1)
would return the red component of the pixel from picture 3 that is left 2 and up 1 from the current position.
Although x offsets may be as large as width of the picture, y offsets are limited to a small window (+/- 8
pixels) due to efficiency considerations. However, it is not usually necessary to worry about this problem --
if the requested offset is not available, the next best pixel is returned instead.

For additional convenience, the function li(n) is defined as the input brightness for picture n. This function
also accepts x and y offsets.

The constant nfiles gives the number of input files present, and WE gives the white efficacy (lumens/bright-
ness) for pixel values. The variables x and y give the current output pixel location for use in spatially
dependent functions, the constants xmax and ymax give the input resolution, and the constants xres and yres
give the output resolution (usually the same, but see below). The constant functions re(n), ge(n), be(n), and
le(n) give the exposure values for picture n, and pa(n) gives the corresponding pixel aspect ratio. Finally,
for pictures with stored view parameters, the functions Ox(n), Oy(n) and Oz(n) return the ray origin in
world coordinates for the current pixel in picture n, and Dx(n), Dy(n) and Dz(n) return the normalized ray
direction. In addition, the function T(n) returns the distance from the origin to the aft clipping plane (or
zero if there is no aft plane), and the function S(n) returns the solid angle of the current pixel in steradians
(always zero for parallel views). If the current pixel is outside the view region, T(n) will return a negative
value, and S(n) will return zero.

The —w option can be used to suppress warning messages about invalid calculations. The —o option indi-
cates that original pixel values are to be used for the next picture, undoing any previous exposure changes
or color correction.

The —x and —y options can be used to specify the desired output resolution, xres and yres, and can be
expressions involving other constants such as xmax and ymax. The constants xres and yres may also be
specified in a file or expression. The default output resolution is the same as the input resolution.

The —x and —y options must be present if there are no input files, when the definitions of ro, go and bo will
be used to compute each output pixel. This is useful for producing simple test pictures for various pur-
poses. (Theoretically, one could write a complete renderer using just the functional language...)

The standard input can be specified with a hyphen (’-”). A command that produces a RADIANCE picture
can be given in place of a file by preceeding it with an exclamation point (’!’).

EXAMPLES
To produce a picture showing the difference between picl and pic2:

pcomb -e ’ro=ri(1)-ri(2);go=gi(1)-gi(2);bo=bi(1)-bi(2)’ picl pic2 > diff
Or, more efficiently:
pcomb picl -s -1 pic2 > diff

To precompute the gamma correction for a picture:

RADIANCE 8/31/96 1

PCOMB(1) PCOMB(1)

pcomb -e ’ro=ri(1)".4;go=gi(1)".4;bo=bi(1)".4" pic > pic.gam
To perform some special filtering:
pcomb -f myfilt.cal -x xmax/2 -y ymax/2 input.pic > filtered.pic
To make a picture of a dot:
pcomb -x 100 -y 100 -e "ro=b;go=b;bo=b;b=if((x-50)"2+(y-50)"2-25°2,0,1)" > dot

AUTHOR
Greg Ward

SEE ALSO
calc(1), getinfo(1), pcompos(1), pfilt(1), rpict(1)

RADIANCE 8/31/96 2

PCOMPOS(1) PCOMPOS(1)

NAME
pcompos - composite RADIANCE pictures.
SYNOPSIS
pcompos [-x xres J[-yyres][-brgb][-Ihh][-la][-t minl][+t max1][-1 lab][=SS] pic1 x1
yl.
or

pcompos [—a ncols][—s spacing][—o x0 y0][options] picl pic2 ..

DESCRIPTION

Pcompos arranges and composites RADIANCE pictures and sends the result to the standard output. Each
input picture must be accompanied by an anchor point (unless the —a option is used, see below). This
anchor point is the usually position of the picture’s left lower corner in the final output, but can be changed
for individual pictures with an =SS option, where S is one of ’-’, ’+” or ’0’, indicating the minimum, maxi-
mum or center of the image, respectively. (For example, =+- would indicate the anchor is relative to the
right lower corner, and =-0 would indicate the anchor is relative to the center of the left edge.) Negative
anchor coordinates result in the input being cropped at the origin. By default, the size of the output picture
will be just large enough to encompass all the input files. By specifying a smaller dimension using the —x
and —y options, input files can be cropped at the upper boundary. Specifying a larger dimension produces a
border. The —b option specifies a background color to appear wherever input files do not cover. The
default value is black (0 0 0).

If input files overlap, later pictures will overwrite earlier ones. By default, input files are copied uncondi-
tionally within the output boundaries. The —t option specifies a lower threshold intensity under which input
pixels will not be copied to the output. The +t option specifies an upper threshold. These options are use-
ful for cutting around irregular boundaries in the input.

The —I option can be used to specify a label for a specific picture, which will be given a height determined
by the —Ih option (default 24 pixels) and placed in the upper left corner of the picture. This label is gener-
ated by the program psign(1). The —la option instructs pcompos to label each picture automatically by its
name. This is particularly useful in conjunction with the —a option for producing a catalog of images (see
example below). The —I option may still be used to override the default label for a picture.

The —a option can be used to automatically compute anchor points that place successive pictures next to
each other in ncols columns. The ordering will place the first picture in the lower left corner, the next just
to the right of it, and so on for ncols pictures. Then, the next row up repeats the pattern until all the input
pictures have been added to the output. If the pictures are of different size, pcompos will end up leaving
some background areas in the output picture. There will also be an unfinished row at the top if the number
of pictures is not evenly divided by ncols. The —s N option will cause each image to be separated by at
least N pixels. The —o x0 y0 option specifies a honzero anchor point for the bottom left image.

The standard input can be specified with a hyphen (’-”). A command that produces a RADIANCE picture
can be given in place of a file by preceeding it with an exclamation point (’!’).

EXAMPLE
To put a copyright label at the bottom of a picture:

psign Copyright 1987 | pcompos pic.inp 0 0 +t .5 - 384 64 > pic.out
To make a catalog of images separated by white 10-pixel borders:
pcompos -la-a4-s10-b 11 1 dog*.pic > alldogs.pic

NOTES
Since there is a limit to the number of open files and processes, large collections of images must be created
in stages. Even if the system limit on open files is large, pcompos places an artificial limit of 64 on the
number of open files and/or processes.

AUTHOR
Greg Ward

RADIANCE 12/18/97 1

PCOMPOS(1) PCOMPOS(1)

SEE ALSO
getinfo(1), pfilt(1), psign(1), rpict(1)

RADIANCE 12/18/97 2

PCOND(1) PCOND(1)

NAME
pcond - condition a RADIANCE picture for output

SYNOPSIS
pcond [options] input [output]

DESCRIPTION
Pcond conditions a Radiance picture for output to a display or hard copy device. If the dynamic range of
the scene exceeds that of the display (as is usually the case), pcond will compress the dynamic range of the
picture such that both dark and bright regions are visible. In addition, certain limitations in human vision
may be mimicked in order to provide an appearance similar to the experience one might have in the actual
scene.

Command line switches turn flags off and on, changing program behavior. A switch given by itself toggles
the flag from off to on or on to off depending on its previous state. A switch followed by a ’+’ turns the
option on explicitly. A switch followed by a ’-’ turns the option off. The default is all switches off. Other
options specify output device parameters in order to get more accurate color and contrast.

h[+]
Mimic human visual response in the output. The goal of this process is to produce output that
correlates strongly with a person’s subjective impression of a scene. This switch is a bundle of
the —a, —v, —s and —c options.

a[+]
Defocus darker regions of the image to simulate human visual acuity loss. This option will not
affect well-lit scenes.

v[+]
Add veiling glare due to very bright regions in the image. This simulates internal scattering in
the human eye, which results in a loss of visible contrast near bright sources.

s[+]
Use the human contrast sensitivity function in determining the exposure for the image. A
darker scene will have relatively lower exposure with lower contrast than a well-lit scene.

<[+]
If parts of the image are in the mesopic or scotopic range where the cone photoreceptors lose
their efficiency, this switch will cause a corresponding loss of color visibility in the output and
a shift to a scotopic (blue-dominant) response function.

w[+]

Use a center-weighted average for the exposure rather than the default uniform average. This
may improve the exposure for scenes with high or low peripheral brightness.

-i fixfrac Set the relative importance of fixation points to fixfrac, which is a value between 0 and 1. If
fixfrac is zero (the default), then no fixation points are used in determining the local or global
adaptation. If fixfrac is greater than zero, then a list of fixation points is read from the standard
input. These points are given as tab-separated (X,y) picture coordinates, such as those pro-
duced by the —op option of ximage(1). The foveal samples about these fixation points will
then be weighted together with the global averaging scheme such that the fixations receive
fixfrac of the total weight. If fixfrac is one, then only the fixation points are considered for
adaptation.

-1[+-]
Rather than computing a histogram of foveal samples from the source picture, use the precom-
puted histogram provided on the standard input. This data should be given in pairs of the
base-10 logarithm of world luminance and a count for each bin in ascending order, as com-
puted by the phisto(1) script. This option is useful for producing identical exposures of multi-
ple pictures (as in an animation), and provides greater control over the histogram computation.

RADIANCE 10/27/98 1

PCOND(1) PCOND(1)

A[+]
Use a linear response function rather than the standard dynamic range compression algorithm.
This will prevent the loss of usable physical values in the output picture, although some parts
of the resulting image may be too dark or too bright to see.

-e expval Set the exposure adjustment for the picture to expval. This may either be a real multiplier, or a
(fractional) number of f-stops preceeded by a ’+’ or ’-’. This option implies a linear response
(see the —I option above).

-u Ldmax Specifies the top of the luminance range for the target output device. That is, the luminance (in
candelas/m™2) for an output pixel value of (R,G,B)=(1,1,1). The default value is 100 cd/m"2.

-d Lddyn Specifies the dynamic range for the target output device, which is the ratio of the maximum
and minimum usable display luminances. The default value is 32.

-p Xr yr xg yg xb yb xw yw
Specifies the RGB primaries for the target output device. These are the 1931 CIE (x,y) chro-
maticity values for red, green, blue and white, respectively.

-f macbeth.cal
Use the given output file from macbethcal(1) to precorrect the color and contrast for the target
output device. This does a more thorough job than a simple primary correction using the —p
option. Only one of —f or —p may be given.

-x mapfile Put out the final mapping from world luminance to display luminance to mapfile. This file will
contain values from the minimum usable world luminance to the maximum (in candelas/m™2)
in one column, and their corresponding display luminance values (also in candelas/m™2) in the
second column. This file may be used for debugging purposes, or to plot the mapping function
created by pcond.

EXAMPLES
To display an image as a person might perceive it in the actual scene:

pcond -h final.pic > display.pic
ximage display.pic ; rm display.pic &

To do the same on a 24-bit display with known primary values:

setenv DISPLAY_PRIMARIES ".580 .340 .281 .570 .153 .079 .333 .333"
pcond -h -p $DISPLAY_PRIMARIES final.pic | ximage &

To prepare a picture to be sent to a film recorder destined eventually for a slide projector with a minimum
and maximum screen luminance of 1.5 and 125 candelas/m™2, respectively:

pcond -d 83 -u 125 final.pic > film.pic

To do the same if the output colors of the standard image "ray/lib/lib/macbeth_spec.pic" have been mea-
sured:

macbethcal -c mbfilm.xyY > film.cal
pcond -d 83 -u 125 -f film.cal final.pic > film.pic

To further tweak the exposure to bring out certain areas indicated by dragging the right mouse button over
them in ximage:

ximage -op -t 75 final.pic | pcond -i .5 -d 83 -u 125 -f film.cal final.pic > film.pic
To use a histogram computed on every 10th animation frame:

phisto frame*0.pic > global.hist
pcond -1 -s -¢ frame0352.pic < global.hist | ra_tiff - frame0352.tif

REFERENCE
Greg Ward Larson, Holly Rushmeier, Christine Piatko, “A Visibility Matching Tone Reproduction Operator
for High Dynamic Range Scenes,” IEEE Transactions on Visualization and Computer Graphics , Decem-
ber 1997.

RADIANCE 10/27/98 2

PCOND(1) PCOND(1)

http://www.sgi.com/Technology/pixformat/Larsonetal.html

AUTHOR
Greg Ward Larson

SEE ALSO
getinfo(1), macbethcal(1), normtiff(1), pcompos(1), pflip(1), phisto(1), pinterp(1), pvalue(1), protate(1),
ra_xyze(1), rad(1), rpict(1), ximage(1)

RADIANCE 10/27/98 3

PDFBLUR(1) PDFBLUR(1)

pdfblur - generate views for depth-of-field blurring

SYNOPSIS

pdfblur aperture distance nsamp viewfile

DESCRIPTION

Pdfblur takes the given viewfile and computes nsamp views based on a focus distance of distance and an
aperture diameter of aperture (both in world coordinate units). When rendered and averaged together, these
views will result in a picture with the specified depth of field. Either pinterp(1) or rpict(1) may be called to
do the actual work. (The given viewfile must also be passed on the command line to the chosen renderer,
since pdfblur provides supplemental view specifications only.)

For pinterp, feed the output of pdfblur to the standard input of pinterp and apply the —B option to blur
views together. In most cases, a single picture with z-buffer is all that is required to get a satisfactory result,
though the perfectionist may wish to apply three pictures arranged in a triangle about the aperature, or alter-
natively apply the —ff option together with the —fr option of pinterp. (The latter may actually work out to
be faster, since rendering three views takes three times as long as a single view, and the —fr option will end
up recomputing relatively few pixels by comparison.)

To use pdfblur with rpict, apply the —S option to indicate a rendering sequence, and set the —o option with
a formatted file name to save multiple output pictures. When all the renderings are finished, combine them
with the pcomb(1) program, using appropriate scalefactors to achieve an average. Note that using rpict is
MUCH more expensive than using pinterp, and it is only recommended if the scene and application abso-
lutely demand it (e.g. there is prominent refraction that must be modeled accurately).

For both pinterp and rpict, the computation time will be proportional to the number of views from pdfblur.
We have found a nsamp setting somewhere between 5 and 10 to be adequate for most images. Relatively
larger values are appropriate for larger aperatures.

EXAMPLES

To use pinterp to simulate an aperture of 0.5 inches on a lens focused at a distance of 57 inches:

rpict -vf myview -x 640 -y 480 -z orig.zbf scene.oct > orig.pic
pdfblur 0.5 57 8 orig.pic | pinterp -B -vf orig.pic -x 640 -y 480 orig.pic orig.zbf > blurry.pic

To use rpict exclusively to do the same:

pdfblur .5 57 5 myview | rpict -S 1 -vf myview -x 640 -y 480 -0 view%d.pic scene.oct
pcomb -s .2 viewl.pic -s .2 view2.pic -s .2 view3.pic -s .2 view4.pic -s .2 view5.pic > blurry.pic

AUTHOR

Greg Ward

This program really only works with perspective views.

SEE ALSO

pcomb(1), pinterp(1), pmblur(1), rcalc(1), rpict(1), vwright(1)

RADIANCE 1/24/96 1

PEXPAND(1) PEXPAND(1)

NAME
pexpand - expand requested commands in metafile

SYNOPSIS
pexpand [+/-EPDOCSURIIrtmvsp] file ..

DESCRIPTION
Pexpand reads each metafile file in sequence and expands any commands specified in a ’+’ option, and
deletes any commands specified in a ’-* option. This is necessary because most drivers will not support
many metafile commands such as v’ (vector string) and ’O’, ’C’, and ’s’ (segments). Pexpand will expand
"+’ instances into the corresponding primitives which are supported, and delete all *-* instances.

Certain commands are currently considered basic, and must be supported by all drivers. The commands
'D’,’E’, S, U, 'R, P, °r, and 't are basic (see metafile(5)).
If no input files are specified, the standard input is read.

+EPDOCSURIIrtmvsp
Expand the requested command(s).

—-EPDOCSURIIrtmvsp
Delete the requested command(s).

EXAMPLE
To expand vector strings and segements, and delete pauses from "meta™:

pexpand +vOCs -P meta

FILES
Jusr/lib/meta/vchars.mta (see metafile(5))

AUTHOR
Greg Ward

SEE ALSO
metafile(5), psort(1)

RADIANCE 6/24/98 1

PEXTREM(1) PEXTREM(1)

NAME
pextrem - find minimum and maximum values in RADIANCE picture

SYNOPSIS
pextrem [—o] [picture]

DESCRIPTION
Pextrem locates the minimum and maximum values for the input picture, and prints their pixel locations and
color values. The first line printed contains the x and y pixel location (x measured from the left margin, y
measured from the bottom), followed by the red, green and blue values. The second line printed contains
the same information for the maximum value.

The —o option prints the original (radiance) values, undoing any exposure or color correction done on the
picture.

If no input picture is given, the standard input is read.

AUTHOR
Greg Ward

BUGS
The luminance value is used for comparison of pixels, although in certain anomolous cases (ie. highly satu-
rated colors) it is possible that pextrem will not pick the absolute minimum or maximum luminance value.
This is because a fast integer-space comparison is used. A more reliable floating-point comparison would
be slower by an order of magnitude.

SEE ALSO
falsecolor(1), getinfo(1), pcomb(1), pcompos(1), pextrem(1), pfilt(1), pflip(1), protate(1), psign(1), rpict(1),
ximage(1)

RADIANCE 11/15/93 1

PFILT(L)

NAME

PFILT(1)

pfilt - filter a RADIANCE picture

SYNOPSIS

pfilt [options] [file]

DESCRIPTION

Pfilt performs anti-aliasing and scaling on a RADIANCE picture. The program makes two passes on the
picture file in order to set the exposure to the correct average value. If no file is given, the standard input is

read.

-X res

-y res

-p rat

-e exp

-t lamp

-f lampdat

-r rad

-m frac

-h vl
-nN
-sval

—a

RADIANCE

Set the output x resolution to res. This must be less than or equal to the x dimension of the tar-
get device. If res is given as a slash followed by a real number, the input resolution is divided
by this number to get the output resolution. By default, the output resolution is the same as the
input.

Set the output y resolution to res, similar to the specification of the x resolution above.

Set the pixel aspect ratio to rat. Either the x or the y resolution will be reduced so that the pix-
els have this ratio for the specified picture. If rat is zero, then the x and y resolutions will
adhere to the given maxima. Zero is the default.

Pixel aspect ratio is being corrected, so do not write PIXASPECT variable to output file.

Adjust the exposure. If exp is preceded by a ’+’ or ’-*, the exposure is interpreted in f-stops (ie.
the power of two). Otherwise, exp is interpreted as a straight multiplier. The individual pri-
maries can be changed using —er, —eg and —eb. Multiple exposure options have a cumulative
effect.

Color-balance the image as if it were illuminated by fixtures of the given type. The specifica-
tion must match a pattern listed in the lamp lookup table (see the -f option below).

Use the specified lamp lookup table rather than the default (lamp.tab).

Use only one pass on the file. This allows the exposure to be controlled absolutely, without
any averaging. Note that a single pass is much quicker and should be used whenever the
desired exposure is known and star patterns are not required.

Use two passes on the input. This is the default.

Use box filtering (default). Box filtering averages the input pixels corresponding to each sepa-
rate output pixel.

Use Gaussian filtering with a radius of rad relative to the output pixel size. This option with a
radius around 0.6 and a reduction in image width and height of 2 or 3 produces the highest
quality pictures. A radius greater than 0.7 results in a defocused picture.

Limit the influence of any given input pixel to frac of any given output pixel. This option may
be used to mitigate the problems associated with inadequate image sampling, at the expense of
a slightly blurred image. The fraction given should not exceed the output picture dimensions
over the input picture dimensions (x_o*y_o/x_ily_i), or blurring will occur over the entire
image. This option implies the —r option for Gaussian filtering, which defaults to a radius of
0.6.

Set intensity considered “hot” to Ivl. This is the level above which areas of the image will
begin to exhibit star diffraction patterns (see below). The default is 100 watts/sr/m2.

Set the number of points on star patterns to N. A value of zero turns star patterns off. The
default is 0. (Note that two passes are required for star patterns.)

Set the spread for star patterns to val. This is the value a star pattern will have at the edge of
the image. The default is .0001.

Average hot spots as well. By default, the areas of the picture above the hot level are not used
in setting the exposure.

11/8/96 1

PFILT(L) PFILT(1)

ENVIRONMENT
RAYPATH directories to search for lamp lookup table

FILES

AUTHOR
Greg Ward

SEE ALSO
getinfo(1), ies2rad(1), pcompos(1), pflip(1), pinterp(1), pvalue(1), protate(1), rad(1), rpict(1), ximage(1)

RADIANCE 11/8/96 2

PFLIP(1) PFLIP(1)

NAME

pflip - flip a RADIANCE picture.
SYNOPSIS

pflip [-h][=v][—c] input [output]
DESCRIPTION

Pflip flips a RADIANCE picture horizontally and/or vertically. The —h option results in a horizontal
exchange, and the —v option results in a vertical exchange. Both options may be applied.

The —c option indicates that the action is to correct an improper original image orientation, thus the
recorded scanline ordering should not be changed.

AUTHOR
Greg Ward

SEE ALSO
getinfo(1), pcompos(1), pfilt(1), protate(1), psign(1), rpict(1)

RADIANCE 11/15/93 1

PHISTO(1) PHISTO(1)

NAME
phisto - compute a luminance histogram from one or more RADIANCE pictures

SYNOPSIS
phisto picture ..

DESCRIPTION
Phisto is a script that calls pfilt(1), rcalc(1) and histo(1) to compute a histogram of log luminance values for
foveal samples in the given picture files. A foveal sample covers approximately 1 degree, though this script
does not use this exact area. The minimum and maximum values are determined, and 100 histogram bins
are uniformly divided between these extrema. Foveal samples less than 1e-7 candelas/sq.meter are silently
ignored. If no picture is named on the command line, the standard input is read.

The primary function of this script is to precompute histograms for the pcond(1) program, which may then
be used to compute multiple, identical exposures. This is especially useful for animations and image com-
parisons.

EXAMPLE
To compute two identical tone mappings for imagel.pic and image2.pic:
phisto imagel.pic image2.pic > both.histo
pcond -1 -h imagel.pic < both.histo > imagelm.pic
pcond -1 -h image2.pic < both.histo > image2m.pic
AUTHOR
Greg Ward Larson

SEE ALSO
histo(1), pcond(1), pfilt(1), pvalue(1), rcalc(1), total(1)

RADIANCE 3/12/98 1

PINTERP(1) PINTERP(1)

NAME
pinterp - interpolate/extrapolate view from pictures

SYNOPSIS
pinterp [view options][—t threshold][-z zout][—f type][-B][—alg][—e exposure][—n] pictfile
ZSpec ..

DESCRIPTION

Pinterp interpolates or extrapolates a new view from one or more RADIANCE pictures and sends the result
to the standard output. The input picture files must contain correct view specifications, as maintained by
rpict(1), rview(1), pfilt(1) and pinterp. Specifically, pinterp will not work on pictures processed by pcom-
pos(1) or pcomb(1). Each input file must be accompanied by a z specification, which gives the distance to
each pixel in the image. If zspec is an existing file, it is assumed to contain a short floating point number
for each pixel, written in scanline order. This file is usually generated by the —z option of rpict(1). If zspec
is a positive number rather than a file, it will be used as a constant value for the corresponding image. This
may be useful for certain transformations on "flat" images or when the viewpoint remains constant.

The —n option specifies that input and output z distances are along the view direction, rather than absolute
distances to intersection points. This option is usually appropriate with a constant z specification, and
should not be used with rpict(1) z files.

The —z option writes out interpolated z values to the specified file. Normally, this information is thrown
away.

Pinterp rearranges the pixels from the input pictures to produce a reasonable estimate of the desired view.
Pixels that map within the —t threshold of each other (.02 times the z distance by default) are considered
coincident. With the —a option, image points that coincide will be averaged together, giving a smooth
result. The —q option turns averaging off, which means that the first mapped pixel for a given point will be
used. This makes the program run faster and take less memory, but at the expense of image quality. By
default, two or more pictures are averaged together, and a single picture is treated with the faster algorithm.
This may be undesirable when a quick result is desired from multiple input pictures in the first case, or a
single picture is being reduced in size (anti-aliased) in the second case.

Portions which were hidden or missing in the input pictures must be "filled in" somehow, and a number of
methods are provided by the —f option. The default value for this option is —fa, which results in both fore-
ground and background filling. The foreground fill algorithm spreads each input pixel to cover all output
pixels within a parallelogram corresponding to that pixel’s projection in the new view. Without it, each
input pixel contributes to at most one output pixel. The background algorithm fills in those areas in the
final picture that have not been filled with foreground pixels. It does this by looking at the boundary sur-
rounding each blank area and picking the farthest pixels to each side, assuming that this will make a suit-
able background. The —ff option tells the program to use only the foreground fill, the —fb option says use
only background fill, and the —fO option says not to use either fill algorithm.

Even when both fill algorithms are used, there may still be some unfilled pixels. By default, these pixels
are painted black and assigned a z distance of zero. The —fc option can be used to change the color used
for unfilled pixels, and the —fz option can be used to set the z distance (always along the view direction).
Alternatively, the —fr option can be used to compute these pixels using rtrace(1). The argument to this
option is a quoted string containing arguments for rtrace. It must contain the octree used to generate the
input pictures, along with any other options necessary to match the calculation used for the input pictures.
The —fs option can be used to place a limit on the distance (in pixels) over which the background fill algo-
rithm is used. The default value for this option is 0, which is interpreted as no limit. A value of 1 is equiv-
alent to turning background fill off. When combined with the —fr option, this is roughly equivalent to the
—ps option of rpict(1).

In order of increasing quality and cost, one can use the —fa option alone, or the —fr option paired with —fs
or —ff or —f0. The last combination will result in the recalculation of all pixels not adequately accounted
for in the input pictures, with an associated computational expense. It is rare that the —fs option results in
appreciable image degradation, so it is usually the second combination that is used when the background
fill algorithm results in objectionable artifacts.

RADIANCE 1/24/96 1

PINTERP(1) PINTERP(1)

The —B option may be used to average multiple views read from the standard input into a single, blurred
output picture. This is similar to running pinterp multiple times and averaging the output together with a
program like pcomb(1). This option is useful for simulating motion blur and depth of field. (See also pdf-
blur(1).) The input views are reported in the information header of the output file, along with the averaged
view. The picture dimensions computed from the first view will be the ones used, regardless whether or not
the subsequent views agree. (The reported pixel aspect ratio in the output is determined from these original
dimensions and the averaged view.) Note that the expense of the —fr option is proportional to the number
of views computed, and the —z output file will be the z-buffer of the last view interpolated rather than an
averaged distance map.

In general, pinterp performs well when the output view is flanked by two nearby input views, such as might
occur in a walk-through animation sequence. The algorithms start to break down when there is a large dif-
ference between the view desired and the view(s) provided. Specifically, obscured objects may appear to
have holes in them and large areas at the image borders may not be filled by the foreground or background
algorithms. Also, specular reflections and highlights will not be interpolated very well, since their view-
dependent appearance will be incompletely compensated for by the program. (The —a option offers some
benefit in this area.)

The —e option may be used to adjust the output image exposure, with the same specification given as for
pfilt. The actual adjustment will be rounded to the nearest integer f-stop if the —q option is in effect (or
there is only a single input picture).

EXAMPLE
To interpolate two frames of a walk-through animation, anti-alias to 512x400 and increase the exposure by
2.5 f-stops:

pinterp -vf 27.vf -a -x 512 -y 400 -e +2.5 30.pic 30.z 20.pic 20.z > 27.pic
To extrapolate a second eyepoint for a stereo pair and recalculate background regions:
pinterp -vf right.vf -ff -fr "-av .1 .1 .1 scene.oct" left.pic left.z > right.pic

AUTHOR
Greg Ward

SEE ALSO
getinfo(1), pdfblur(1), pfilt(1), pmblur(1), rpict(1), ranimate(1), rtrace(1), rview(1)

RADIANCE 1/24/96 2

PLOTIN(1) PLOTIN(1)

NAME

plotin - convert plot(5) to metafile(5) primitives
SYNOPSIS

plotin file ..

DESCRIPTION
Plotin reads each plot(5) file in sequence and converts it to output suitable for use by the metafile filters. If
no input files are specified, the standard input is read.

EXAMPLE
To plot the graph example.grf to the imagen:

graph < example.grf | plotin | impress | ipr
FILES
see pexpand(1)
AUTHOR
Greg Ward

SEE ALSO
graph(1G), metafile(5), plot(1), plot(5), plotout(1)

RADIANCE 6/24/98 1

PMBLUR(1) PMBLUR(1)

NAME

pmblur - generate views for camera motion blurring

SYNOPSIS

pmblur speed nsamp vOfile v1file

DESCRIPTION

Pmblur takes two viewfiles and generates nsamp views starting from vOfile and moving towards vifile.
When rendered and averaged together, these views will result in a picture with motion blur due to a camera
changing from vO to v1 in a relative time unit of 1, whose shutter is open starting at vO for speed of these
time units. Either pinterp(1) or rpict(1) may be called to do the actual work. (The given vOfile must also be
passed on the command line to the chosen renderer, since pmblur provides supplemental view specifica-
tions only.)

For pinterp, feed the output of pmblur to the standard input of pinterp and apply the —B option to blur
views together. In most cases, two pictures with z-buffers at vO and v1 will get a satisfactory result, though
the perfectionist may wish to apply the —ff option together with the —fr option of pinterp.

To use pmblur with rpict, apply the —S option to indicate a rendering sequence, and set the —o option with
a formatted file name to save multiple output pictures. When all the renderings are finished, combine them
with the pcomb(1) program, using appropriate scalefactors to achieve an average. Note that using rpict is
MUCH more expensive than using pinterp, and it is only recommended if the scene and application abso-
lutely demand it (e.g. there is prominent refraction that must be modeled accurately).

For both pinterp and rpict, the computation time will be proportional to the number of views from pmblur.
We have found a nsamp setting somewhere between 5 and 10 to be adequate for most images. Relatively
larger values are appropriate for faster camera motion.

The —pm option of rpict may be used instead or in combination to blur animated frames, with the added
advantage of blurring reflections and refractions according to their proper motion. However, this option
will result in more noise and expense than using pmblur with pinterp as a post-process. If both blurring
methods are used, a smaller value should be given to the rpict —pm option equal to the shutter speed
divided by the number of pmblur views. This will be just enough to blur the boundaries of the ghosts
which may appear using pmblur with a small number of time samples.

EXAMPLES

To use pinterp to simulate motion blur between two frames of a walk-through animation, where the camera
shutter is open for 1/4 of the interframe distance:

pmblur .25 8 fr1023.pic fr1024.pic | pinterp -B -vf fr1023.pic -x 640 -y 480 fr1023.pic fr1023.zbf
fr1024.pic fr1024.zbf > fr1023h.pic

AUTHOR

BUGS

Greg Ward

Changes in the view shift and lift vectors or the fore and aft clipping planes are not blurred.

SEE ALSO

pcomb(1), pdfblur(1), pinterp(1), rcalc(1), rpict(1), vwright(1)

RADIANCE 3/3/98 1

PROTATE(L) PROTATE(L)

NAME
protate - rotate a RADIANCE picture.

SYNOPSIS
protate [—c][—r] input [output]

DESCRIPTION
Protate rotates a RADIANCE picture 90 degrees. This is useful for output on hardcopy devices with aspect
ratios opposite to the input picture. By default, the image is rotated clockwise. The —r option may be used
to rotate the image counter-clockwise instead.

The —c option indicates that the action is to correct an improper original image orientation, thus the
recorded scanline ordering should not be changed.

NOTES
To rotate an image 180 degrees, use pflip(1) with both the -h and -v options.

AUTHOR
Greg Ward

SEE ALSO
getinfo(1), pcompos(1), pfilt(1), pflip(1), psign(1), rpict(1)

RADIANCE 10/27/98 1

PSIGN(1)

NAME

PSIGN(1)

psign - produce a RADIANCE picture from text.

SYNOPSIS

psign [options] [text]

DESCRIPTION

Psign produces a RADIANCE picture of the given text. The output dimensions are determined by the char-

acter height

, aspect ratio, number of lines and line length. (Also the character size if text squeezing is

used.) If no text is given, the standard input is read.

-cbrghb
-cfrgb

-h cheight
-a aspect

-X Xsize

-y ysize

-S spacing

-f fontfile

EXAMPLE
To put a big

psign -h

ENVIRONMENT
RAYPATH

AUTHOR
Greg Ward

BUGS

Set the background color to r g b The default is white (1 1 1).

Set the foreground color to r g b The default is black (0 0 0).

Text reads to the right (default).

Text reads upwards.

Text reads to the left (upside down).

Text reads downwards.

Set the character height to cheight. The default is 32 pixels.

Set the character aspect ratio (height/width) to aspect. The default value is 1.67.

Set the horizontal image size to xsize. Use with —y option (below) in place of the —h specifica-
tion to control output image size directly. If the character aspect ratio (—a option, above) is
non-zero, then one of the specified x or y output dimensions may be reduced to maintain this
ratio. If direction is right (—dr) or left (—dl), then it is not necessary to give the —y option,
since it can be computed from the character height (—h).

Set the vertical image size to ysize. Use with the —x option (described above). If direction is
up (—du) or down (—dd), then it is not necessary to give the —x option, since it can be com-
puted from the character height (—h).

Set the intercharacter spacing to spacing. The magnitude of this value is multiplied by the
character height over the aspect ratio (ie. the character width) to compute the desired distance
between characters in the output. The sign of the value, positive or negative, determines how
this ideal spacing is used in the actual placement of characters. If spacing is positive, then the
overall width of the line will not be affected, nor will indentation of textual elements. Thus,
the text format will be mostly unaffected. However, spacing between characters will reflect
their relative size for a more natural appearance. If spacing is negative, characters will be
squeezed together to meet the spacing critereon, regardless of how it might affect the format of
the output. The default value for spacing is zero, which is interpreted as uniformly spaced
characters.

Load the font from fontfile. The default font is helvet.fnt

"Hi!" on the terminal:
22-al-cb000-cf111Hi\!|ttyimage

path to search for font files

The entire bitmap is stored in memory, which can be a problem for large and/or high-resolution signs.

RADIANCE

10/9/97 1

PSIGN(1) PSIGN(1)

SEE ALSO
getinfo(1), pcompos(1), pfilt(1), ttyimage(1)

RADIANCE 10/9/97 2

PSMETA(L) PSMETA(1)

NAME

psmeta - convert metafile to PostScript
SYNOPSIS

psmeta file ..

DESCRIPTION
Psmeta reads each metafile file in sequence and converts it to PostScript output suitable for a standard
letter-size page. The file produced may also be read into programs that can handle Encapsulated PostScript.
If no input files are specified, the standard input is read.

EXAMPLE
To print the plot file example.plt to the ap5 printer:

bgraph example.plt | psmeta | Ipr -P ap5

AUTHOR
Greg Ward

SEE ALSO
bgraph(1), igraph(1), imagew(1), Ipr(1), mx80(1), t4014(1)

RADIANCE 6/24/98 1

PSORT(1) PSORT(1)

NAME
psort - sort primitives in metafile as requested

SYNOPSIS
psort [+/=x][+/=y][+/-X][+/-Y] file ..

DESCRIPTION
Psort reads each metafile file in sequence and sorts primitives between globals according to the option spec-
ification. Lower case options mean the corresponding minimum, upper case indicates the maximum value.
A ’+’ before the option means sort in order of increasing values, ’-” means decreasing. The order the
options appear on the command line is the order in which the extrema are examined. For example, the
options —Y +x would mean "sort on decreasing ymax, then increasing xmin values".

If no input files are specified, the standard input is read.

EXAMPLE
To sort the file "meta" in order of increasing xmax, then decreasing ymin:

psort +X -y meta

FILES
Jusr/tmp/psXXXXa /usr/tmp/psXXXXb

BUGS
Aborting the program will sometimes leave files in /usr/tmp.

AUTHOR
Greg Ward

SEE ALSO
metafile(5), pexpand(1)

RADIANCE 6/24/98 1

PVALUE(L) PVALUE(1)

NAME
pvalue - convert RADIANCE picture to/from alternate formats

SYNOPSIS

pvalue [options] [file]

pvalue -r [options] [filel [file2 file3]]
DESCRIPTION

Pvalue converts the pixels of a RADIANCE picture to or from another format. In the default mode, pixels
are sent to the standard output, one per line, in the following ascii format:

Xpos ypos red green blue

If no file is given, the standard input is read.

The reverse conversion option (-r) may be used with a single input file or when reading from the standard
input, but if the second form is used with three separate input files, the three primaries are presumed to be
separated in these files.

-u Print only unique values in the output, skipping runs of equal pixels. Specifying +u turns this
option off, which is the default.

-0 Print original values, before exposure compensation. Specifying +o uses final values, which is
the default.

-h Do not print header. Specifying +h causes the header to be printed, which is the default.

-H Do not print the resolution string. (See also the —r option below.) Specifying an input resolu-

tion for reverse conversion also turns this option off. Specifying +H causes the resolution
string to be printed, which is the default.

—-s nbytes Skip the specified number of bytes on the input header. This option is useful for skipping unin-
telligible headers in foreign file formats. (Does not work when reading from standard input.)

—e exposure
Adjust the exposure by the amount specified. If the exposure is being given as a conversion
factor, use +e instead, so an EXPOSURE line will not be recorded in the header (if any).

—g gamma Set gamma correction for conversion. When converting from a RADIANCE picture to another
format, the inverse gamma is applied to correct for monitor response. When converting to a
RADIANCE picture (—r option), the gamma is applied directly to recover the linear values.
By default, gamma is set to 1.0, meaning no gamma correction is performed.

-d Data only, do not print x and y pixel position.

—-da Same as —d.

—di Print ascii integer values from 0 to 255+. If +di is given, the integer values will be preceded by
the x and y pixel locations.

—-db Output binary byte values from 0 to 255.

-dw Output binary 16-bit words from 0 to 65535.

-dw Output binary 16-bit words from 0 to 65535, byte-swapped.

—-df Output binary float values.

-dd Output binary double values.

-R Reverse ordering of colors so that the output is blue then green then red. The default ordering
(specified with +R) is red then green then blue.

-n The RGB values are non-interleaved, meaning that all the red, green and blue data are stored
together in separate chunks. Interleaving may be turned on with the +n option, which is the
default.

RADIANCE 1/15/99 1

PVALUE(L)

-b

-y res

+X Ies

EXAMPLE

PVALUE(1)

Print brightness values rather than RGB. Specifying +b turns this option off, which is the
default.

Put out only the primary P, where P is one of upper or lower case 'R’, G’ or ’B’ for red, green
or blue, respectively. This option may be used to separate the Radiance primaries into three
files with three separate runs of pvalue, or only one file when only one primary is needed.
Note that there is no space between this option and its argument.

Perform reverse conversion. Input is in the format given by the other options. The x and y res-
olution must be specified on the command line, unless the image file contains a Radiance reso-
lution string at the beginning (see —H option above and —y option below). Specifying +r con-
verts from a Radiance picture to other values, which is the default.

Set the output y resolution to res. If +y is specified, then the scanlines are assumed to be in
increasing order (ie. bottom to top). The default value for this option is 0, which means that
the picture size and scanline order must appear as the first line after the header (if any) in the
input file. Either an upper or lower case "Y’ may be used for this option. Since Radiance files
always contain such a line, this option has no effect for forward conversions.

Set the output x resolution to res. If —x is specified, then the scanlines are assumed to be in
decreasing order (ie. right to left). The ordering of the —y and +x options determines whether
the scanlines are sorted along x or along y. Most Radiance pictures are sorted top to bottom,
then left to right. This corresponds to a specification of the form "-y yres +x xres". Either an
upper or lower case *X’ may be used for this option. Like the —y option, —x options have no
effect for forward conversions.

To look at the original, unique pixels in picture:

pvalue -0 -u picture | more

To convert from a 512x400 8-bit greyscale image in bottom to top, left to right scanline ordering:

pvalue -r -db -b -h +y 400 +x 512 input.im > flipped.pic
pflip -v flipped.pic > final.pic

AUTHOR
Greg Ward

BUGS

The —r option does not work with the —u option. Also, input pixel locations are ignored during a reverse
conversion, so this information is not used in determining the scanline ordering or picture size.

SEE ALSO

getinfo(1), pcompos(1), pfilt(1), pflip(1), protate(1), rpict(1), rtrace(1), rview(1)

RADIANCE

1/15/99 2

RA_BN(1) RA_BN(1)

NAME
ra_bn - convert RADIANCE picture to/from Barneyscan image

SYNOPSIS
ra_bn [-g gamma][—e +/-stops] { input|- } [output]
ra_bn -r [-g gamma][—e +/-stops] input [output]

DESCRIPTION
Ra_bn converts between RADIANCE and Barneyscan native RGB image files. Since Barneyscan images
are stored in three files, one for each color component, only the root file name is given and the program
appends the suffixes "red", "grn" and "blu". The —g option specifies the exponent used in gamma correc-
tion; the default value is 2.0. An exponent of 1.0 turns gamma correction off. The —e option specifies an
exposure compensation in f-stops (powers of two). Only integer stops are allowed, for efficiency. The —r
option invokes a reverse conversion, from a Barneyscan image to a RADIANCE picture.

AUTHORS
Greg Ward

SEE ALSO
pfilt(1), ra_ppm(1), ra_pr(1), ra_pr24(1), ra_t8(1), ra_t16(1), ra_tiff(1), ximage(1)

RADIANCE 11/15/93 1

RA_GIF(1) RA_GIF(1)

NAME
ra_gif - convert RADIANCE picture to Compuserve GIF

SYNOPSIS
ra_gif [-b][—=d][—c ncolors][—g gamma][—e +/-stops][-n sampfac] input [output]

DESCRIPTION

Ra_gif converts from RADIANCE to Compuserve GIF color-mapped, compressed image files. In the
default mode, a RADIANCE npicture is converted to a color-mapped GIF file of the same horizontal and
vertical dimensions with 8-bits per pixel. The —b option converts the image to black and white. The —d
option turns off dithering. The —c option allows fewer than 256 colors (and fewer than 8 bits per pixel).
The —g option specifies the exponent used in gamma correction; the default value is 2.2. An exponent of
1.0 turns gamma correction off. The —e option specifies an exposure compensation in f-stops (powers of
two). Only integer stops are allowed, for efficiency. The —n option specifies a sampling factor for neural
network color quantization. This value should be between 1 and 80, where 1 takes the longest and pro-
duces the best results in small areas of the image. If no value is given, a faster median cut algorithm is
used. If the output file is missing, the standard output is used.

AUTHORS
Greg Ward
Paul Haeberli
David Rowley
Anthony Dekker provided the code for neural network color quantization

SEE ALSO
pfilt(1), ra_bn(1), ra_ppm(1), ra_pr(1), ra_pr24(1), ra_t8(1), ra_t16(1), ra_tiff(1), ximage(1)

RADIANCE 6/10/94 1

RA_PICT(1) RA_PICT(1)

NAME
ra_pict - convert Radiance pictures to Macintosh PICT files

SYNOPSIS
ra_pict [—e +/- stops] [-v] [—g gamma] [infile [outfile]]

DESCRIPTION
Ra_pict converts a Radiance picture, as produced by rpict (1) to a Macintosh PICT file. The picture will be
a 24 bit PICT 2 picture, using a single bit map (DirectRect).

OPTIONS
—g gamma This sets an explict gamma correction for the image. If it is not specified, the default value of
2.0 is used.
-V Invokes verbose mode, and gives line on standard error giving the size of the picture and the
gamma correction used.
—e +/- stops
Adjusts the exposure by stops.
infile Specifies the file to read the picture from. If none is specified, it takes it from standard input. If
standard input is used, then the picture is sent to standard output.
outfile Specifies the file to send the PICT file to. If none is specified, it is sent to standard output.
EXAMPLES

ra_pict mypict.pic mypict.pict

Will convert the Radiance picture mypict.pic, giving the Macintosh PICT mypict.pict.
ra_pict -g 2.2 mypict.pic mypict.pict

Will convert the file using a gamma of 2.2.

SEE ALSO
rpict(1)

BUGS
Does not yet do Macintosh PICT to Radiance PIC, as this PICT files are a lot more complex than just one
bit map. This is left as an exercise for the reader :-)

AUTHOR
Russell Street

RADIANCE 11/15/93 1

RA_PPM(1) RA_PPM(1)

NAME
ra_ppm - convert RADIANCE picture to/from a Poskanzer Portable Pixmap

SYNOPSIS
ra_ppm|[-r][-a][-b][—s maxv][-g gamma][—e +/-stops] [input [output]]

DESCRIPTION
Ra_ppm converts between RADIANCE and Poskanzer Portable Pixmap formats. The —g option specifies
the exponent used in gamma correction; the default value is 2.2. An exponent of 1 turns gamma correction
off. The —e option specifies an exposure compensation in f-stops (powers of two). Only integer stops are
allowed, for efficiency. The —r option invokes a reverse conversion, from a Pixmap to a RADIANCE pic-
ture. If the output file is missing, the standard output is used. If the input file is missing as well, the stan-
dard input is used.

The —a option produces a standard ASCII Pixmap representation instead of the default binary file. The file
is much larger and the conversion is much slower, which is why this format is not normally used. The —b
option forces greyscale output. The —s option controls the output scale, which is 255 by default. If this
value is set above 255, then two bytes will be output for each component in binary mode. This may not be
understood by some PPM readers, which do not understand files with maximum values greater than 255.
The maximum allowed setting for this parameter is 65535.

With the —r option, the type of the Pixmap input file is determined automatically. Ra_ppm will read either
greyscale or color Pixmaps, with any precision up to a maximum scale of 65535.

NOTES
The Poskanzer Portable Bitmap Plus package contains translators between the Pixmap format and many of
the dozen or so image file "standards" that exist. At the time of this writing, the software is free and avail-
able by anonymous ftp from export.lcs.mit.edu (18.30.0.238) in the file "contrib/pbmplus.tar.Z".

AUTHOR
Greg Ward

ACKNOWLEDGEMENT
Work on this program was initiated and sponsored by the LESO group at EPFL in Switzerland and Silicon
Graphics, Inc.

SEE ALSO
pfilt(1), ra_bn(1), ra_pr(1), ra_pr24(1), ra_t8(1), ra_t16(1), ra_tiff(1), ximage(1)

RADIANCE 2/10/99 1

RA_PR(1) RA_PR(1)

NAME
ra_pr - convert RADIANCE picture to/from pixrect rasterfile

SYNOPSIS
ra_pr [—d][-b][—c ncolors][-g gamma][—e +/-stops] input [output]
ra_pr —-r [-g gamma][—e +/-stops] [input [output]]

DESCRIPTION

Ra_pr converts between RADIANCE and pixrect rasterfile formats. In the default mode, a RADIANCE
picture is converted to a pixrect rasterfile of the same horizontal and vertical dimensions with 8-bits per
pixel. The —d option turns off dithering. The —b option converts the image to black and white, for
improved quality on greyscale monitors. Only with this option can the input be taken from stdin. The —c
option allows fewer than 256 colors. The —g option specifies the exponent used in gamma correction; the
default value is 2.2. An exponent of 1.0 turns gamma correction off. The —e option specifies an exposure
compensation in f-stops (powers of two). Only integer stops are allowed, for efficiency. The —r option
invokes a reverse conversion, from a pixrect rasterfile to a RADIANCE picture. If the output file is miss-
ing, the standard output is used.

AUTHORS
Greg Ward
Paul Heckbert provided the code for color quantization

BUGS
Only standard 8-bit color rasterfiles are read or written.

SEE ALSO
pfilt(1), ra_bn(1), ra_ppm(1), ra_pr24(1), ra_t8(1), ra_t16(1), ra_tiff(1), ximage(1)

RADIANCE 11/15/93 1

RA_PR24(1) RA_PR24(1)

NAME
ra_pr24 - convert RADIANCE picture to/from 24-bit rasterfile

SYNOPSIS
ra_pr24[-r|-rgb][-g gamma][—e +/-stops] [input [output]]

DESCRIPTION
Ra_pr24 converts between RADIANCE and 24-bit pixrect rasterfile formats. The —g option specifies the
exponent used in gamma correction; the default value is 2.2. An exponent of 1 turns gamma correction off.
The —e option specifies an exposure compensation in f-stops (powers of two). Only integer stops are
allowed, for efficiency. The —r option invokes a reverse conversion, from a 24-bit rasterfile to a RADI-
ANCE picture. If the —rgb option is used, the output rasterfile will be in RGB byte-ordering rather than the
more standard (for Sun) BGR ordering. Byte ordering is determined automatically for the reverse conver-
sion. If the output file is missing, the standard output is used. If the input file is missing as well, the stan-
dard input is used.

AUTHOR
Greg Ward

BUGS
Only standard 24-bit color rasterfiles are read or written.

SEE ALSO
pfilt(1), ra_bn(1), ra_ppm(1), ra_pr(1), ra_t8(1), ra_t16(1), ra_tiff(1), ximage(1)

RADIANCE 11/15/93 1

RA_PS(1) RA_PS(1)

NAME
ra_ps - convert RADIANCE picture to a PostScript file

SYNOPSIS
ra_ps [—bjc][—A|B|C][—n ncopies][—e +/-stops][—g gamma][—p paper][-m[h|v] margin][-d
dpi] [input [output]]

DESCRIPTION
Ra_ps translates a RADIANCE picture to a color or greyscale Adobe PostScript file for printing on a laser
printer or importing to a page layout program. The —b option tells ra_ps to produce greyscale output. (The
default is color, which may be specified explicitly with the —c option.)

The —A option specifies that the output should be in uncompressed ASCII hexstring format (the default).
The —B option specifies that the output should be in uncompressed binary string format. The file size will
be roughly half that of the ASCII equivalent, but some printers and especially some printer connections do
not support binary transfer, so this option should be used with caution. The —C option specifies that the
output should be in run-length compressed ASCII format. The file size will be one half to one tenth as
large as the hexstring equivalent and can be sent over any network or by e-mail. The only disadvantage is
that it will actually take longer to print on some printers, since the "readhexstring” procedure is generally
faster than a custom replacement.

The —n option specifies the number of copies to print of this image. It is often preferable to use this option
instead of the multiple copy option of the print spooler program, since the latter often results in duplication
of the input file with a large associated cost.

The —e option specifies an exposure compensation in f-stops (powers of two). Only integer stops are
allowed, for efficiency. The —g option specifies a power law for the printer transfer function. The default
gamma setting for greyscale printers is 1.0 (linear), and the default gamma for color printers is 1.8 (com-
monly used in prepress). If your output seems to have too much contrast relative to its screen equivalent,
print out the file "ray/lib/lib/gamma.pic" to your printer without any gamma correction and using the —d
option to set the dots-per-inch (see below). The best match between the small lines and the grey patch next
to it indicate the approximate gamma of your printer, which you should use with the —g option for best con-
trast reproduction in subsequent conversions.

The standard print area assumes 8.5 by 11 inch (U.S. letter) paper, with 0.5 inch margins on all sides. The
image will be rotated 90 degrees if it fits better that way in the available print area, and it will always be
centered on the page. The —p and —m options to control the paper size and margins, respectively. The
argument to the —p option is the common name for a given paper size, or WWxHH, where WW s the
width (in inches) and HH is the height. If millimeters or centimeters are the preferred measurement unit,
the ’x’ may be replaced by 'm’ or ’c’, respectively. The WW and HH values are decimal quantities, of
course. The current paper identifiers understood by the program may be discovered by giving a 0 argument
to the —p option. They are currently:

_Name Width_Height_(inches)
envelope 4.12 9.50

executive 7.25 10.50

letter 8.50 11.00

lettersmall 7.68 10.16

legal 8.50 14.00

monarch 3.87 7.50

statement 5.50 8.50

tabloid 11.00 17.00

A3 11.69 16.54

A4 8.27 11.69
Adsmall 7.47 10.85
A5 6.00 8.27
A6 4.13 6.00
B4 10.12 14.33
B5 7.17 10.12

RADIANCE 8/28/98 1

RA_PS(1) RA_PS(1)

C5 6.38 9.01
C6 4.49 6.38
DL 4.33 8.66

hagaki 3.94 583

The paper size name may be abbreviated with three or more letters, and character case is ignored. The
argument to the —m option is the margin width, which is 0.5 inches by default. A millimeter or centimeter
quantity may be given instead of inches by immediately following the value with a 'm’ or ’c’ character,
respectively. (Leave no space between the quantity and its unit letter.) If you wish to specify the horizon-
tal and vertical margins separately, use the —mh and —mv options, instead.

The —d option may be used to explicitly set the print density (in dots per inch). If the input picture is lower
resolution than the printer and has square pixels, then ra_ps will adjust the image size so that pixels map to
dot regions exactly. This may improve the appearance of fine detail, and may speed up the printing process
as well, at the expense of a slightly smaller image area. If you wish to maximize print area and the input
image contains no fine detail, then do not specify this option.

The output from ra_ps is designed to be compatible with the Encapsulated PostScript standard, which
means that the resulting file may be incorporated into documents by page layout programs that can read in
EPS files. Unfortunately, there is currently no option for generating a preview bitmap, so the image will
show up on the screen as a rectangular area only. To control the EPS image size directly, use the —p option
as explained above with the WWxHH specification, and set —m 0 to turn off the margins.

AUTHOR
Greg Ward

SEE ALSO
pfilt(1), ra_bn(1), ra_pr(1), ra_pr24(1), ra_t8(1), ra_t16(1), ra_ppm(1), ra_tiff(1), ximage(1)

RADIANCE 8/28/98 2

RA_RGBE(1) RA_RGBE(1)

NAME
ra_rgbe - convert between different RADIANCE picture types

SYNOPSIS
ra_rgbe [-r][—e +/-stops][-f][-n frameno] [input [outspec]]

DESCRIPTION
Ra_rgbe converts between RADIANCE run-length encoded and flat formats, and separates concatanated
animation frames produced by rpict(1). The —e option specifies an exposure compensation in f-stops (pow-
ers of two). Only integer stops are allowed, for efficiency. By default, ra_rgbe produces a flat RADIANCE
picture file from any type of RADIANCE input picture. The —r option causes ra_rgbe to produce a run-
length encoded file instead.

If the input file consists of multiple animation frames as produced by rpict with the —S option, ra_rgbe will
read each frame and write it to the output file created by calling printf(3) with the output specification and
frame number as arguments. If the output specification begins with an exclamation mark (’!”), then this
interpreted as a command spec., which is also run through printf with the frame number to get the final
command. This command must accept a Radiance picture on its standard input, and may write results
either to a file or to the standard output. The —n option may be used to select a specific frame for output,
and other frames in the input will be skipped. Normally, all frames will be read and written.

Ra_rgbe will report an error and exit if the target output file already exists, unless the —f option is given. If
the output file is missing, the standard output is used. If the input file is missing or set to ’-’, the standard
input is used.

NOTES
The file format for RADIANCE pictures was changed between release 1.4 and release 2.0. The older for-
mat can still be read by all the programs, but only the newer format is produced. This newer format cannot
be read by RADIANCE software prior to release 2.0.

Ra_rgbe provides some downward compatibility by producing files that can be read by older RADIANCE
software. The resultant files are also easier to manipulate with programs designed to read raw raster data.

The other use for ra_rgbe is as a quicker way to adjust the exposure of a RADIANCE picture than pfilt(1),
since ra_rgbe only allows integer f-stop changes. In this mode, ra_rgbe should be used with the —r option.

AUTHOR
Greg Ward

ACKNOWLEDGEMENT
Work on this program was initiated and sponsored by the LESO group at EPFL in Switzerland.

SEE ALSO
pfilt(1), printf(1), ra_xyze(1), rpict(1)

RADIANCE 1/23/98 1

RA_T16(1) RA_T16(1)

NAME
ra_t16 - convert RADIANCE picture to/from Targa 16 or 24-bit image file

SYNOPSIS
ra_t16 [-2][-3][-g gamma][—e +/-stops] [input [output]]
ra_t16 —r [—g gamma][—e +/-stops] [input [output]]

DESCRIPTION

Ra_t16 converts between RADIANCE and Targa 16-bit or 24-bit RGB image files (type 2 in Targa’s docu-
mentation). In the default mode, a RADIANCE picture is converted to an RGB file of the same horizontal
and vertical dimensions with 16-bits per pixel. The —3 option tells the program to produce a 24-bit image
file instead. The —g option specifies the exponent used in gamma correction; the default value is 2.2. An
exponent of 1.0 turns gamma correction off. The —e option specifies an exposure compensation in f-stops
(powers of two). Only integer stops are allowed, for efficiency. The —r option invokes a reverse conver-
sion, from a 16-bit or 24-bit Targa file to a RADIANCE picture. The determination of depth is made auto-
matically on reverse translation, so the —2 and —3 options are not necessary. If the output file is missing,
the standard output is used.

AUTHORS
Greg Ward

BUGS
Run-length encoded files can be read but not written with this program.

SEE ALSO
pfilt(1), ra_bn(1), ra_ppm(1), ra_pr(1), ra_pr24(1), ra_t8(1), ra_tiff(1), ximage(1)

RADIANCE 11/15/93 1

RA_T8(1) RA_T8(1)

NAME
ra_t8 - convert RADIANCE picture to/from Targa 8-bit image file

SYNOPSIS
ra_t8 [—d][-b][—c ncolors][—g gamma][—e +/-stops][-n sampfac] input [output]
ra_t8 —r [-g gamma][—e +/-stops] [input [output]]

DESCRIPTION

Ra_t8 converts between RADIANCE and Targa 8-bit color-mapped image files (type 1 in Targa’s documen-
tation). In the default mode, a RADIANCE picture is converted to a color-mapped Targa file of the same
horizontal and vertical dimensions with 8-bits per pixel. The —d option turns off dithering. The —b option
converts the image to black and white. Only with this option can the input be taken from stdin. The —c
option allows fewer than 256 colors. The —g option specifies the exponent used in gamma correction; the
default value is 2.2. An exponent of 1.0 turns gamma correction off. The —e option specifies an exposure
compensation in f-stops (powers of two). Only integer stops are allowed, for efficiency. The —n option
specifies a sampling factor for neural network color quantization. This value should be between 1 and 80,
where 1 takes the longest and produces the best results in small areas of the image. If no value is given, a
faster median cut algorithm is used. The —r option invokes a reverse conversion, from an 8-bit Targa file to
a RADIANCE picture. If the output file is missing, the standard output is used.

AUTHORS
Greg Ward
Anthony Dekker provided the code for neural network color quantization

BUGS
Run-length encoded files can be read but not written with this program.

SEE ALSO
pfilt(1), ra_bn(1), ra_ppm(1), ra_pr(1), ra_pr24(1), ra_t16(1), ra_tiff(1), ximage(1)

RADIANCE 5/30/95 1

RA_TIFF(1) RA_TIFF(1)

NAME

ra_tiff - convert RADIANCE picture to/from a TIFF color or greyscale image

SYNOPSIS

ra_tiff [-z|-L|-I][-b][-e +/-stops][-g gamma] { in.pic|- } out.tif
ra_tiff -r [-x][-g gamma][—e +/-stops] in.tif [out.pic|-]

DESCRIPTION

Ra_tiff converts between RADIANCE and TIFF image formats. The —g option specifies the exponent used
in gamma correction; the default value is 2.2, which is the recommended value for TIFF images.

The —b option can be used to specify an 8-bit greyscale TIFF output file. The type of input file is deter-
mined automatically.

The —z option will result in LZW compression of the TIFF output file. The —L option specifies SGILOG
compression, which is recommended to capture the full dynamic range of the Radiance picture. However,
since many TIFF readers do not yet support this format, use this option under advisement. The —I option
specifies SGILOG24 compressed output, which has slightly less dynamic range than SGILOG, but may be
smaller in some cases. (It may also be larger in some cases.) Decompression is automatically determined
for TIFF input.

The —e option specifies an exposure compensation in f-stops (powers of two). Only integer stops are
allowed, for efficiency.

The —r option invokes a reverse conversion, from a TIFF image to a RADIANCE picture. The RADI-
ANCE picture file can be taken from the standard input or sent to the standard output by using a hyphen
(’-”) in place of the file name, but the TIFF image must be to or from a file. The —x option can be used to
specify an XYZE Radiance output file, rather than the default RGBE.

EXAMPLES

To convert a Radiance picture to SGILOG-compressed TIFF format:
ra_tiff -L scenel.pic scenel.tif
To later convert this image back into Radiance and display using human visibility tone-mapping:

ra_tiff -r scenel.tif scenel.pic
ximage -e human scenel.pic

AUTHOR

Greg Ward Larson
Sam Leffler

ACKNOWLEDGEMENT

BUGS

Work on this program was initiated and sponsored by the LESO group at EPFL in Switzerland. Additions
for the SGILOG data encoding were sponsored by Silicon Graphics, Inc.

Many TIFF file subtypes are not supported.
A gamma value other than 2.2 is not properly recorded or understood if recorded in the TIFF file.

SEE ALSO

pfilt(1), ra_bn(1), ra_ppm(1), ra_pr(1), ra_pr24(1), ra_t8(1), ra_t16(1), ximage(1)

RADIANCE 8/29/97 1

RA_XYZE(1) RA_XYZE()

NAME
ra_xyze - convert between RADIANCE RGBE and XY ZE formats

SYNOPSIS
ra_xyze [-r][—e exposure][—c | —u][—p Xr yr xg yg xb yb xw yw] [input [output]]

DESCRIPTION
Ra_xyze converts between RADIANCE RGBE (red,green,blue,exponent) and XYZE (CIE X,Y,Z,exponent)
formats. The —e option specifies an exposure compensation, which may be given as a decimal multiplier or
in f-stops (powers of two). By default, ra_xyze produces a flat XYZE RADIANCE picture file from any
type of RADIANCE input picture. To override these defaults, the —c option may be used to specify run-
length encoded output, or the —u option may be used to specify a flat output.

The —r option causes ra_xyze to produce a run-length encoded RGBE file instead. The —p option may be
used to override the standard RADIANCE RGB primary colors to tailor the image for a particular output
device or representation. The eight floating-point arguments to this option are the 1931 CIE (x,y) chro-
maticity coordinates of the three RGB primaries plus the white point, in that order. The new primaries will
be recorded in the header of the output file, so that the original information may be fully recovered later. It
is not necessary that the input file by in XYZE format. Th —r option may therefore be used to convert from
one RGB primary representation to another using the —p option.

If the output file is missing, the standard output is used. If the input file is missing as well, the standard
input is used.

NOTES

The CIE standard used is the 1931 2-degree observer, and the correct output representation relies on the
original RADIANCE input description being defined properly in terms of the standard RADIANCE RGB
primaries, whose CIE (x,y) chromaticity values are defined in the header file in src/common/color.h. In this
same file is a standard for the luminous efficacy of white light (WHTEFFICACY), which is used as a con-
version between lumens and watts throughout RADIANCE. This same factor is applied by ra_xyze when
converting between the radiometric units of the RGBE format and the photometric units of the XYZE for-
mat. The purpose of this factor is to ensure that the Y component of the CIE representation is luminance in
units of candelas/meter2.

Most of the RADIANCE picture filters should work uniformly on either RGBE or XYZE files, so it is not
necessary to convert back to RGBE format except for conversion or display, in which case the correct pri-
maries for the chosen output device should be specified with the —p option if they are known.

EXAMPLES
To convert RGBE output from rpict(1) into run-length encoded XYZE format:
rpict [options] scene.oct | ra_xyze -c > scene_xyz.pic
To prepare a RADIANCE picture for display on a calibrated NTSC monitor:
ra_xyze -r -p .670 .330 .210 .710 .140 .080 .333 .333 stand.pic ntsc.pic

AUTHOR
Greg Ward

BUGS
Any color correction applied to the original image is not removed or translated by ra_xyze, and it may
result in color shifts in the output. If color preservation is important and the correction is unwanted, it is
best to remove it with pfilt(1) using the —er, —eg and —eb options first. (Simply look at the header and
apply the reciprocal primaries of all COLORCORR= lines multiplied together.) Better still, get the picture
before color correction is applied.

SEE ALSO
pfilt(1), ra_rgbe(1), rpict(1)

RADIANCE 5/30/96 1

RAD(1)

NAME

RAD(1)

rad - render a RADIANCE scene

SYNOPSIS

rad[-s][-n][-t][-e][-V][-w][-V view][—o device] rfile [VAR=value ..]

DESCRIPTION

Rad is an executive program that reads the given rfile and makes appropriate calls to oconv(1), mkillum(1),
rpict(1), pfilt(1), and/or rview(1) to render a specific scene. Variables in rfile give input files and qualitative
information about the rendering(s) desired that together enable rad to intelligently set parameter values and
control the simulation.

Normally, commands are echoed to the standard output as they are executed. The —s option tells rad to do
its work silently. The —n option tells rad not to take any action (ie. not to actually execute any commands).
The —t option tells rad to bring rendering files up to date relative to the input (scene description) files, with-
out performing any actual calculations. If no octree exists, it is still necessary to run oconv(1) to create one,
since the —t option will not create invalid (i.e. empty) files, and a valid octree is necessary for the correct
operation of rad. The —e option tells rad to explicate all variables used for the simulation, including
default values not specified in the input file, and print them on the standard output.

Normally, rad will produce one picture for each view given in rfile. The —v option may be used to specify
a single desired view. The view argument may either be a complete view specification (enclosed in quotes
and beginning with an optional identifier) or a number or single-word identifier to match a view defined in
rfile. If the argument is one of the standard view identifiers, it may or may not be further elaborated in rfile.
(See "view" variable description, below.) If the argument does not match any views in rfile and is not one
of the standard views, no rendering will take place. This may be convenient when the only action desired
of rad is the rebuilding of the octree. In particular, the argument "0" will never match a view.

If the —V option is given, each view will be printed on the standard output before being applied, in a form
suitable for use in a view file or rpict rendering sequence. This is helpful as feedback or for accessing the
rad view assignments without necessarily starting a rendering.

By default, rad will run rpict and pfilt to produce a picture for each view. The —o option specifies an output
device for rview (usually "x11") and runs this interactive program instead, using the first view in rfile or the
view given with the —v option as the starting point.

Additional variable settings may be added or overridden on the command line following rfile. Upper case
variables specified more than once will result in a warning message (unless the —w option is present), and
the last value given will be the one used.

The —w option turns off warnings about multiply and misassigned variables.

Rendering variable assignments appear one per line in rfile. The name of the variable is followed by an
equals sign (’=") and its value(s). The end of line may be escaped with a backslash (’\’), though it is not
usually necessary since additional variable values may be given in multiple assignments. Variables that
should have only one value are given in upper case. Variables that may have multiple values are given in
lower case. Variables may be abbreviated by their first three letters. Comments in rfile start with a pound
sign (’#’) and proceed to the end of line.

The rendering variables, their interpretations and default values are given below.

OCTREE The name of the octree file. The default name is the same as rfile but with any suffix replaced
by ".oct". (The octree must be a file -- rad cannot work with commands that produce
octrees.)

ZONE This variable specifies the volume of interest for this simulation. The first word is either "Inte-
rior" or "Exterior”, depending on whether the zone is to be observed from the inside or the out-
side, respectively. (A single letter may be given, and case does not matter.) The following six
numbers are the minimum and maximum X coordinates, minimum and maximum Y, and mini-
mum and maximum Z for the zone perimeter. It is important to give the zone as it is used to
determine many of the rendering parameters. The default exterior zone is the bounding cube
for the scene as computed by oconv.

RADIANCE 2/1/99 1

RAD(1)

RAD(1)

EXPOSURE

EYESEP

scene

materials

illum

objects

view

RADIANCE

This variable tells rad how to adjust the exposure for display. It is important to set this variable
properly as it is used to determine the ambient value. An appropriate setting may be discov-
ered by running rview and noting the exposure given by the "exposure =" command. As in
rview and pfilt, the exposure setting may be given either as a multiplier or as a number of f-stop
adjustments (eg. +2 or -1.5). There is no default value for this variable. If it is not given, an
average level will be computed by pfilt and the ambient value will be set to 10 for exterior
zones and 0.01 for interior zones.

The interocular spacing for stereo viewing. l.e., the world distance between the pupils of the
left and right eyes. The default value is the sum of the three "ZONE" dimensions divided by
100.

This variable is used to specify one or more scene input files. These files will be given together
with the materials file(s) and any options specified by the "oconv" variable to oconv to produce
the octree given by the "OCTREE" variable. In-line commands may be specified in quotes
instead of a file, beginning with an exclamation mark (’!’). If the "scene" variable is not pre-
sent, then the octree must already exist in order for rad to work. Even if this variable is given,
oconv will not be run unless the octree is out of date with respect to the input files. Note that
the order of files in this variable is important for oconv to work properly, and files given in later
variable assignments will appear after previous ones on the oconv command line.

This variable is used to specify files that, although they must appear on the oconv command
line, do not affect the actual octree itself. Keeping the materials in separate files allows them to
be modified without requiring the octree to be rebuilt (a sometimes costly procedure). These
files should not contain any geometry, and the —f option must not be given in the "oconv" vari-
able for this to work.

This variable is used to specify files with surfaces to be converted into illum sources by mkil-
lum(1). When this variable is given, additional octree files will be created to contain the scene
before and after illum source conversion. These files will be named according to the (default)
value of the OCTREEE variable, with either a ’0” or a "1’ appearing just before the file type
suffix (usually ".oct").

This variable is used for files that, although they do not appear on the oconv command line,
contain geometric information that is referenced indirectly by the scene files. If any of these
files is changed, the octree will be rebuilt. (The raddepend(1) command may be used to find
these dependencies automatically.)

This variable is used to specify a desired view for this zone. Any number of "view" lines may
be given, and each will result in a rendered picture (unless the —v or —o option is specified).
The value for this variable is an optional identifier followed by any number of view options
(see rpict(1) for a complete listing). The identifier is used in file naming and associating a
desired view with the —v command line option. Also, there are several standard view identi-
fiers defined by rad. These standard views are specified by strings of the form
"[Xx]?[Yy]?[Zz]?[vIcah]?". (That is, an optional upper or lower case X followed by an
optional upper or lower case Y followed by an optional upper or lower case Z followed by an
optional lower case V, L, C, A or H.) The letters indicate the desired view position, where
upper case X means maximum X, lower case means minimum and so on. The final letter is the
view type, where ’v’ is perspective (the default), ’I’ is parallel, "¢’ is a cylindrical panorama, A
perspective view from maximum X, minimum Y would be "Xy" or "Xyv". A parallel view
from maximum Z would be "ZI". If "ZONE" is an interior zone, the standard views will be
inside the perimeter. If it is an exterior zone, the standard views will be outside. Note that the
standard views are best used as starting points, and additional arguments may be given after the
identifier to modify a standard view to suit a particular model. The default view is "X" if no
views are specified. A single specified view of "0" means no views will be automatically gen-
erated.

2/1/99 2

RAD(1) RAD(1)

UP The vertical axis for this scene. A negative axis may be specified with a minus sign (eg. "-Y").
There is no default value for this variable, although the standard views assume Z is up if no
other axis is specified.

RESOLUTION

This variable specifies the desired final picture resolution. If only a single number is given,
this value will be used for both the horizontal and vertical picture dimensions. If two numbers
are given, the first is the horizontal resolution and the second is the vertical resolution. If three
numbers are given, the third is taken as the pixel aspect ratio for the final picture (a real value).
If the pixel aspect ratio is zero, the exact dimensions given will be those produced. Otherwise,
they will be used as a frame in which the final image must fit. The default value for this vari-
able is 512.

QUALITY
This variable sets the overall rendering quality desired. It can have one of three values,
"LOW", "MEDIUM" or "HIGH". These may be abbreviated by their first letter, and may be in
upper or lower case. Most of the rendering options will be affected by this setting. The default
value is "L".

PENUMBRAS
This is a boolean variable indicating whether or not penumbras are desired. A value of
"TRUE" will result in penumbras (soft shadows), and a value of "FALSE" will result in no
penumbras (sharp shadows). True and false may be written in upper or lower case, and may be
abbreviated by a single letter. Renderings generally proceed much faster without penumbras.
The default value is "F".

INDIRECT
This variable indicates how many diffuse reflections are important in the general lighting of
this zone. A direct lighting system (eg. fluorescent troffers recessed in the ceiling) corresponds
to an indirect level of 0. An indirect lighting system (eg. hanging fluorescents directed at a
reflective ceiling) corresponds to an indirect level of 1. A diffuse light shelf reflecting sunlight
onto the ceiling would correspond to an indirect level of 2. The setting of this variable partially
determines how many interreflections will be calculated. The default value is 0.

PICTURE This is the root name of the output picture file(s). This name will have appended the view
identifier (or a number if no id was used) and a ".pic" suffix. If a picture corresponding to a
specific view exists and is not out of date with respect to the given octree, it will not be re-ren-
dered. The default value for this variable is the root portion of rfile.

RAWFILE
This is the root name of the finished, raw rpict output file. If specified, rad will rename the
original rpict output file once it is finished and filtered rather than removing it, which is the
default action. The given root name will be expanded in the same way as the "PICTURE" vari-
able, and if the "RAWFILE" and "PICTURE" variables are identical, then no filtering will take
place.

ZFILE This is the root name of the raw distance file produced by the —z option of rpict. To this root
name, an underscore plus the view name plus a ".zbf" suffix will be added. If no "ZFILE" is
specified, none will be produced.

AMBFILE
This is the name of the file where "ambient™ or diffuse interreflection values will be stored by
rpict or rview. Although it is not required, an ambient file should be given whenever an inter-
reflection calculation is expected. This will optimize successive runs and minimize artifacts.
An interreflection calculation will take place when the "QUALITY" variable is set to HIGH, or
when the "QUALITY" variable is set to MEDIUM and "INDIRECT" is positive. There is no
default value for this variable.

DETAIL This variable specifies the level of visual detail in this zone, and is used to determine image
sampling rate, among other things. If there are few surfaces and simple shading, then this

RADIANCE 2/1/99 3

RAD(1)

RAD(1)

should be set to LOW. For a zone with some furniture it might be set to MEDIUM. If the
space is very cluttered or contains a lot of geometric detail and textures, then it should be set to
HIGH. The default value is "M".

VARIABILITY

OPTFILE

REPORT

oconv

mkillum

render

pfilt

EXAMPLES

This variable tells rad how much light varies over the surfaces of this zone, and is used to
determine what level of sampling is necessary in the indirect calculation. For an electric light-
ing system with uniform coverage, the value should be set to LOW. For a space with spot
lighting or a window with sky illumination only, it might be set to MEDIUM. For a space with
penetrating sunlight casting bright patches in a few places, it should be set to HIGH. The
default value is "L".

This is the name of a file in which rad will place the appropriate rendering options. This file
can later be accessed by rpict or rview in subsequent manual runs using the at-sign @) file
insert option. (Using an "OPTFILE" also reduces the length of the rendering command, which
improves appearance and may even be necessary on some systems.) There is no default value
for this variable.

This variable may be used to specify a reporting interval for batch rendering. Given in min-
utes, this value is multiplied by 60 and passed to rpict with the —t option. If a filename is given
after the interval, it will be used as the error file for reports and error messages instead of the
standard error. (See the —e option of rpict(1). There is no default value for this variable.

This variable may be used to specify special options to oconv. See the oconv(1) manual page
for a list of valid options.

This variable may be used to specify additional options to mkillum. See the rtrace(1) manual
page for a list of valid options.

This variable may be used to specify additional options to rpict or rview. These options will
appear after the options set automatically by rad, and thus will override the default values.

This variable may be used to specify additional options to pfilt. See the pfilt(1) manual page
for details.

A minimal input file for rad might look like this:

The octree we want to use:

OCTREE-= tutor.oct # wi/o this line, name would be "sample.oct

Our scene input files:

scene=

sky.rad outside.rad room.rad srcwindow.rad

The interior zone cavity:
ZONE=103 02 01.75 # default would be scene bounding cube
The z-axis is up:

UP=2Z

no default - would use view spec.

Our exposure needs one f-stop boost:
EXPOSURE= +1 # default is computed ex post facto

Note that we have not specified any views in the file above. The standard default view "X" would be used
if we were to run rad on this file. If we only want to see what default values rad would use without actually
executing anything, we can invoke it thus:

rad -n -e sample.rif

This will print the variables we have given as well as default values rad has assigned for us. Also, we will
see the list of commands that rad would have executed had the —n option not been present. (Note if the
octree, "tutor.oct”, is not present, an error will result as it is needed to determine some of the opiton

RADIANCE

2/1/99 4

RAD(1) RAD(1)

settings.)

Different option combinations have specific uses, ie:

rad -v 0 sample.rif OPT=samp.opt # build octree, put options in "sample.opt"
rad -n -e -s sample.rif > full.rif # make a complete rad file

rad -n sample.rif > script.sh # make a script of commands

rad -V -v ZI -n -s sample.rif > plan.vf # make a plan view file

rad -t sample.rif # update files after minor change to input

rad -s sample.rif & # execute silently in the background

If we decide that the default values rad has chosen for our variables are not all appropriate, we can add
some more assignments to the file:

QUAL= MED # default was low

DET= low # default was medium - our space is almost empty
PEN= True # we want to see soft shadows from our window
VAR= hi # daylight can result in fairly harsh lighting

view= XYa -wvv 120 # let’s try a fisheye view

PICT= tutor # our picture name will be "tutor_XYa.pic"

Note the use of abbreviations, and the modification of a standard view. Now we can invoke rad to take a
look at our scene interactively with rview:

rad -o x11 sample.rif

Rad will run oconv first to create the octree (assuming it doesn’t already exist), then rview with a long list
of options. Let’s say that from within rview, we wrote out the view files "viewl.vp" and "view2.vp". We
could add these to "sample.rif" like so:

view= vw1l -vf viewl.vp # Our first view
view= vw2 -vf view2.vp # Our second view
RESOLUTION= 1024 # Let’s go for a higher resolution result

To start rview again using vw2 instead of the default, we use:
rad -o x11 -v vw2 sample.rif

Once we are happy with the variable settings in our file, we can run rad in the background to produce one
image for each view:

rad sample.rif REP=5 >& errfile &
This will report progress every five minutes to “errfile".

FILES
$(PICTURE)_$(view).unf Unfinished output of rpict

AUTHOR
Greg Ward

BUGS
Incremental building of octrees is not supported as it would add considerable complexity to rad. Compli-
cated scene builds should still be left to make(1), which has a robust mechanism for handling hierarchical
dependencies. If make is used in this fashion, then only the "OCTREE" variable of rad is needed.

The use of some pfilt options is awkward, since the "EXPOSURE" variable results in a single pass invoca-
tion (the —1 option of pfilt and two passes are necessary for certain effects, such as star patterns. The way
around this problem is to specify a "RAWFILE" that is the same as the "PICTURE" variable so that no fil-
tering takes place, then call pfilt manually. This is preferable to leaving out the "EXPOSURE" variable,
since the exposure level is needed to accurately determine the ambient value for rpict.

RADIANCE 2/1/99 5

RAD(1) RAD(1)

The use of upper and lower case naming for the standard views may be problematic on systems that don’t
distinguish case in filenames.

SEE ALSO
glrad(1), make(1), mkillum(1), objview(1), oconv(1), pfilt(1), raddepend(1), ranimate(1), rholo(1), rpict(1),
rtrace(1), rview(1), touch(1), vgaimage(1), ximage(1)

RADIANCE 2/1/99 6

RAD2MGF(1) RAD2MGF(1)

NAME
rad2mgf - convert RADIANCE scene description to Materials and Geometry Format

SYNOPSIS
rad2mgf [-dU] [input ..]

DESCRIPTION
Rad2mgf converts one or more RADIANCE scene files to the Materials and Geometry Format (MGF).
Input units are specified with the —mU option, where U is one of 'm’ (meters), ’c’ (centimeters), 'f’ (feet)
or ’i’ (inches). The assumed unit is meters, which is the required output unit for MGF (thus the need to
know). If the input dimensions are in none of these units, then the user should apply xform(1) with the —s
option to bring the units into line prior to translation.

The MGF material names and properties for the surfaces will be those assigned in RADIANCE. If a refer-
enced material has not been defined, then its name will be invoked in the MGF output without definition,
and the description will be incomplete.
LIMITATIONS

Although MGF supports all of the geometric types and the most common material types used in RADI-
ANCE, there is currently no support for advanced BRDF materials, patterns, textures or mixtures. Also,
the special types "source" and "antimatter" are not supported, and all light source materials are converted to
simple diffuse emitters (except "illum" materials, which are converted to their alternates). These primitives
are reproduced as comments in the output and must be replaced manually if necessary.

The RADIANCE "instance" type is treated specially. Rad2mgf converts each instance to an MGF include
statement, using the corresponding transformation and a file name derived from the octree name. (The
original octree suffix is replaced by ".mgf".) For this to work, the user must separately create the refer-
enced MGF files from the original RADIANCE descriptions. The description file names can usually be
determined using the getinfo(1) command run on the octrees in question.

EXAMPLE
To convert three RADIANCE files (in feet) to one MGF file:

rad2mgf -df filel.rad file2.rad file3.rad > scene.mgf
To translate a RADIANCE materials file to MGF:
rad2mgf materials.rad > materials.mgf

AUTHOR
Greg Ward

SEE ALSO
getinfo(1), ies2rad(1), mgf2meta(1), mgf2rad(1), obj2rad(1), oconv(1), xform(1)

MGF web site "http://radsite.lbl.gov/mgf/HOME.html"

RADIANCE 5/15/95 1

RADDEPEND(1) RADDEPEND(1)

NAME
raddepend - find RADIANCE scene dependencies

SYNOPSIS
raddepend file ..

DESCRIPTION
Raddepend uses getbbox(1) to expand scene file arguments and find file dependencies for make(1) or
rad(1). Raddepend looks only in the current directory, so dependencies hidden elsewhere in the filesystem
will not be found or named.

The output is the name of files, one per line, that were accessed during the expansion of the input file argu-
ments. The file arguments are excluded from the list. If no input files are given, the standard input is read.

AUTHOR
Greg Ward

BUGS
On some older NFS systems, the file access dates are not updated promptly. As a result, raddepend may
not be 100% reliable on these systems. If the output seems to be missing essential files, this is no doubt
why. The only fix is to put in a longer sleep time between the getbbox call and the final Is(1).

SEE ALSO
make(1), oconv(1), rad(1), xform(1)

RADIANCE 4/15/94 1

RANIMATE(1) RANIMATE(1)

NAME

ranimate - compute a RADIANCE animation

SYNOPSIS

ranimate [-s][-n][—e][-w] ranfile

DESCRIPTION

Ranimate is an executive program that reads the given ranfile and makes appropriate calls to rad(1),
rpict(1), pinterp(1), and/or pfilt(1) to render an animation. Variables in ranfile indicate input files, process
servers (execution hosts), output directories and file names, and various other controls and options.

Normally, commands are echoed to the standard output as they are executed. The —s option tells ranimate
to do its work silently. The —n option tells ranimate not to take any action (ie. not to actually execute any
commands). The —e option tells ranimate to explicate all variables used for the animation, including
default values not specified in the input file, and print them on the standard output.

The —w option turns off warnings about multiply and misassigned variables.

Normally, ranimate will produce one animation frame for each view given in the specified view file. If an
animation has ended or been killed in an incomplete state, however, ranimate will attempt to pick up where
the earlier process left off. If the process is still running, or was started on another machine, ranimate will
report this information and exit.

Animation variable assignments appear one per line in ranfile. The name of the variable is followed by an
equals sign (’=") and its value(s). The end of line may be escaped with a backslash (’\’), though it is not
usually necessary since additional variable values may be given in multiple assignments. Variables that
should have only one value are given in upper case. Variables that may have multiple values are given in
lower case. Variables may be abbreviated by their first three letters, except for "host", which must have all
four. Comments in ranfile start with a pound sign ("#’) and proceed to the end of line.

The animation variables, their interpretations and default values are given below.

DIRECTORY
The name of the animation directory. All temporary files generated during the animation will
be placed in this directory, which will be created by ranimate if it does not exist. A file named
"STATUS" will also be created there, and will contain current information about the animation
process. This variable has no default value, and its setting is required.

OCTREE The name of the octree file for a static scene walk-through animation. There is no default
value for this variable, and any setting will be ignored if the ANIMATE variable is also set (see
below).

ANIMATE

The scene generation command for a dynamic animation. This command, if given, will be
executed with the frame number as the final argument, and on its standard output it must pro-
duce the complete octree for that frame. Care must be taken that this command does not create
any temporary files that might collide with same-named files created by other animation com-
mands running in parallel. Also, the command should produce no output to the standard error,
unless there is a fatal condition. (l.e., switch all warnings off; see the BUGS section, below.)
There is no default animation command, and either this variable or the OCTREE variable must
be set.

VIEWFILE
This variable names a file from which ranimate may extract the view for each frame in the ani-
mation. This file should contain one valid view per frame, starting with frame 1 on line 1,
regardless of the setting of the START variable. An exception is made for a view file with only
a single view, which is used for every frame of a dynamic scene animation. This variable is
required, and there is no default value.

START The initial frame number in this animation sequence. The minimum value is 1, and if a later
starting frame is given, ranimate assumes that the earlier frames are included in some other
ranfile, which has been previously executed. (See the NEXTANIM variable, below.) The

RADIANCE 6/24/98 1

RANIMATE(1) RANIMATE(1)

default value is 1.

END The final frame number in this sequence. The minimum value is equal to the START frame,
and the default value is computed from the humber of views in the given VIEWFILE.
EXPOSURE

This variable tells ranimate how to adjust the exposure for each frame. As in pfilt, the expo-
sure setting may be given either as a multiplier or as a number of f-stop adjustments (eg. +2 or
-1.5). Alternatively, a file name may be given, which ranimate will interpret as having one
exposure value per line per frame, beginning with frame 1 at line 1. (See also the VIEWFILE
variable, above.) There is no default value for this variable. If it is not given, an average level
will be computed by pfilt for each frame.

BASENAME
The base output file name for the final frames. This string will be passed to the —o and —z
options of rpict, along with appropriate suffixes, and thus should contain a printf(3) style inte-
ger field to distinguish one frame number from another. The final frames will use this name
with a ".pic" suffix. The default value is the assigned DIRECTORY followed by
"[frame%03d".

host A host to use for command execution. This variable may be assigned a host name, followed by
an optional number of parallel processes, followed by an optional directory (relative to the
user’s home directory on that machine), followed by an alternate user name. Multiple host
assignments may appear. It is not advisable to specify more than one process on a single-CPU
host, as this just tends to slow things down. The default value is "localhost”, which starts a sin-
gle process in the current directory of the local machine.

RIF This variable specifies a rad input file to use as a source of rendering options and other variable
settings. If given, ranimate will execute rad and create an options file to later pass to rpict or
rtrace. Besides prepending the render variable, ranimate will also extract default settings for
the common variables: OCTREE, RESOLUTION, EXPOSURE and pfilt. Following the file
name, overriding variable settings may be given, which will be passed to rad on the command
line. Settings with spaces in them should be enclosed in quotes. The execution of rad will also
update the contents of the octree, if necessary. There is no default value for this variable.

DISKSPACE
Specify the amount of disk space (in megabytes) available on the destination file system for
temporary file storage. Ranimate will coordinate its batch operations based on this amount of
storage, assuming that there is either enough additional space for all the final frames, or that
the given TRANSFER command will move the finished frames to some other location (see
below). The default value is 100 megabytes.

ARCHIVE

After each batch rendering is finished and checked for completeness, ranimate will execute the
given command, passing the names of all the original pictures and z-buffer files generated by
rpict. (The command is executed in the destination directory, and file names will be simple.)
Normally, the archive command copies the original files to a tape device or somewhere that
they can be retrieved in the event of failure in the frame interpolation stages. After the archive
command has successfully completed, the original renderings are removed. There is no default
value for this variable, meaning that the original unfiltered frames will simply be removed.
Note that the last one or two rendered frames may not be copied, archived or removed in case
there is a another sequence picking up where this one left off.

TRANSFER
The command to transfer the completed animation frames. The shell changes to the destina-
tion directory and appends the names of all the finished frames to this command before it is
executed. Normally, the transfer command does something such as convert the frames to
another format and/or copy them to tape or some other destination device before removing
them. If this variable is not given, the final frames are left where they are. (See BASENAME,

RADIANCE 6/24/98 2

RANIMATE(1)

RSH

RANIMATE(1)

above.)

The command to use instead of rsh(1) to execute commands remotely on another machine.
The arguments and behavior of this program must be identical to the UNIX rsh command,
except that the -1 option will always be used to specify an alternate user name rather than the
user@host convention. Th -l option may or may not appear, but the -n option will always be
used, and the expected starting directory will be that of the remote user, just as with rsh.

NEXTANIM

This variable specifies the next ranfile to use after this sequence is completed. This offers a
convenient means to continue an animation that requires different control options in different
segments. It is important in this case to correctly set the START and END variables in each
ranfile so that the segments do not overlap frames.

OVERSAMPLE

This variable sets the multiplier of the original image size relative to the final size given by the
RESOLUTION variable. This determines the quality of anti-aliasing in the final frames. A
value of 1 means no anti-aliasing, and a value of 3 produces very good anti-aliasing. The
default value is 2. (A fractional value may be used for previews, causing low resolution frames
with large, blocky pixels to be produced.)

INTERPOLATE

MBLUR

RTRACE

This variable sets the number of frames to interpolate between each rendered frame in a static
scene walk-through. Z-buffers for each rendered frame will be generated by rpict, and pinterp
will be called to perform the actual "tweening." This results in a potentially large savings in
rendering time, but should be used with caution since certain information may be lost or inac-
curate, such as specular highlights and reflections, and objects may even break apart if too few
renderings are used to interpolate too much motion. The default value for this variable is 0,
meaning no interpolation. Interpolation is also switched off if the ANIMATE variable is speci-
fied.

This variable specifies the fraction of a frame time that the shutter is simulated as being open
for motion blur. A number of samples may be given as a second argument, which controls the
number of additional frames computed and averaged together by pinterp. If this number is less
than 2, then bluring is performed by rpict only, resulting in greater noise than the combination
of rpict and pinterp used otherwise. (The default value for number of samples is 5.) The
pmblur(1) command is used to generate the given number of additional views for pinterp to
average together. The default value is 0, meaning no motion blurring. This option does not
currently work with the ANIMATE variable, since pinterp only works for static environments.

This boolean variable tells ranimate whether or not to employ rtrace during frame interpola-
tion using the —fr option to pinterp. If set to True, then the same rendering options and static
octree are passed to rtrace as are normally used by rpict. The default value is False. Note that
this variable only applies to static environment walk-throughs (i.e., no ANIMATE command).

RESOLUTION

render

pinterp

RADIANCE

This variable specifies the desired final picture resolution. If only a single number is given,
this value will be used for both the horizontal and vertical picture dimensions. If two numbers
are given, the first is the horizontal resolution and the second is the vertical resolution. If three
numbers are given, the third is taken as the pixel aspect ratio for the final picture (a real value).
If the pixel aspect ratio is zero, the exact dimensions given will be those produced. Otherwise,
they will be used as a frame in which the final image must fit. The default value for this vari-
able is 640.

This variable may be used to specify additional options to rpict or rtrace. These options will
appear after the options set automatically by rad, and thus will override the default values.

This variable may be used to specify additional options to pinterp, which is used to interpolate
frames for a static scene walk-through. (See the pinterp man page, and the INTERPOLATE
variable.) Do not use this variable to set the pinterp —fr option, but use the RTRACE setting

6/24/98 3

RANIMATE(1) RANIMATE(1)

instead.

pfilt This variable may be used to specify additional options to pfilt. If this variable is given in the
ranfile, then pfilt will always be used. (Normally, pfilt is called only if pinterp is not needed or
automatic exposure is required.) See the pfilt manual page for details.

EXAMPLES

A minimal input file for ranimate might look like this:

The rad input file for our static scene:

RIF= tutor.rif

The spool directory:

DIRECTORY= animl

The view file containing one view per frame:
VIEWFILE= anim1.vf

The amount of temporary disk space available:
DISKSPACE= 50# megabytes

Note that most of the variables are not set in this file. If we only want to see what default values ranimate
would use without actually executing anything, we can invoke it thus:

ranimate -n -e sample.ran

This will print the variables we have given as well as default values ranimate has assigned for us. Also, we
will see the list of commands that ranimate would have executed had the —n option not been present.

Usually, we execute ranimate in the background, redirecting the standard output and standard error to a file:
ranimate sample.ran >& sample.err &

If we decide that the default values ranimate has chosen for our variables are not all appropriate, we can
add some more assignments to the file:

host= rays 3 "greg/obj/tutor ray # execute as ray on multi-host "rays"

host= thishost # execute one copy on this host also
INTERP=3 # render every fourth frame
RES= 1024 # shoot for 1024x resolution
MBLUR= .25 # apply camera motion blur
EXP=animl.exp # adjust exposure according to file
pfilt="-r .9 # use Gaussian filtering
ARCHIVE= tar cf /dev/nrtape # save original renderings to tape
Note the use of abbreviation for variable names.
FILES
$(DIRECTORY)/STATUS animation status file $(DIRECTORY)/* other temporary files
$(BASENAME).pic final animation frames
AUTHOR
Greg Ward
BUGS

Due to the difficulty of controlling processes on multiple execution hosts, the —n option of ranimate is not
useful in the same way as rad for generating a script of executable commands to render the sequence. It
may give an idea of the sequence of events, but certain temporary files and so forth will not be in the correct
state if the user attempts to create a separate batch script.

If multiple processors are available on a given host and the RTRACE variable is set to True, then the —PP

RADIANCE 6/24/98 4

RANIMATE(1) RANIMATE(1)

option of rtrace should be employed, but it is not. There is no easy way around this problem, but it has
only minor consequences in most cases. (The —PP option is used for rpict, however.)

The current implementation of the remote shell does not return the exit status of the remote process, which
makes it difficult to determine for sure if there has been a serious error or not. Because of this, ranimate
normally turns off warnings on all rendering processes, and takes any output to standard error from a
remote command as a sign that a fatal error has occurred. (This also precludes the use of the —t option to
report rendering progress.) If the error was caused by a process server going down, the server is removed
from the active list and frame recovery takes place. Otherwise, ranimate quits at that point in the anima-
tion.

The current execution environment, in particular the RAYPATH variable, will not be passed during remote
command execution, so it is necessary to set whatever variables are important in the remote startup script
(e.g., ".cshrc"” for the C-shell). This requirement may be circumvented by substituting the on(1) command
for rsh(1) using the RSH control variable, or by writing a custom remote execution script.

If a different remote user name is used, ranimate first attempts to change to the original user’s directory
with a command of the form cd uname . This works under csh(1), but may fail under other shells such as
sh(1).

If multiple hosts with different floating point formats are used, pinterp will fail because the Z-buffer files
will be inconsistent. (Recall that pinterp is called if INTERPOLATE > 0 and/or MBLUR is assigned.)
Since most modern machines use IEEE floating point, this is not usually a problem, but it is something to
keep in mind.

SEE ALSO
pfilt(1), pinterp(1), pmblur(1), rad(1), ranimove(1), rpict(1), rsh(1), rtrace(1)

RADIANCE 6/24/98 5

RANIMOVE(1) RANIMOVE(1)

NAME
ranimove - render a RADIANCE animation with motion

SYNOPSIS
ranimove [—s][—e][-w][—f beg,end][-n nprocs][-t sec][—d jnd] rnmfile

DESCRIPTION
Ranimove is a program for progressive animation rendering. Variables in the given rnmfile indicate input
files, output file names, and various other controls and options.

Normally, progress reports are written to the standard output, but the —s option tells ranimove to do its
work silently. The —e option tells ranimove to explicate all variables used for the animation, including
default values not specified in the input file, and print them on the standard output. The —w option turns off
warnings about multiply and misassigned variables and non-fatal rendering problems.

Normally, ranimove will produce one animation frame for each view given in the specified view file. If the
—f option is specified, the animation will resume at the given frame, and continue to the end of the
sequence, or to the second frame if one is given (separated from the first by a comma but no space).

The —n option specifies the number of processes to use for rendering. The default value is 1, which is
appropriate for most machines that have a single central processing unit (CPU). If you are running on a
machine with multiple CPUs, a larger value up to the number of processors may be used to improve render-
ing speed, depending on the system load.

Because ranimove renders each frame progressively, it needs some criteria for when to proceed to the next
frame in the animation. The —t option is used to specify the maximum number of seconds to spend on any
one frame. The default value for this option is 60 seconds. Additionally, the —d option may be used to
specify a termination threshold in just-noticeable-differences. If the error can be reduced below this num-
ber of JNDs over the whole frame before the time allocation is spent, ranimove will then proceed to the
next frame. A value of 2.0 JNDs is the point at which 75% of the people will notice a difference, and this is
the level usually selected for such a termination test. There is no default value for this option, which means
that rendering will proceed until the time allocation is spent for each frame, regardless. If —t is set to O,
ranimove will spend as much time as it takes to reduce the visible error below the value set by the —d
option.

Ranimove renders each frame in three stages. In the first stage, a low-quality image is rendered using one
ray sample per 16 pixels. In the second stage, pixels from the previous frame are extrapolated to their cor-
responding positions in this one, based on the given camera and object movements. A set of heuristics is
applied to prevent errors in specular highlights and shadows, avoiding some of the errors typical with the
pinterp(1) program. In the third stage, additional high-quality samples are used to refine important regions
of the image that are judged to have visible errors. This proceeds until the stopping criteria specified by the
—t and -d options are met, when the frame is filtered and written to the designated picture file.

The chief differences between this program and ranimate(1) are that motion blur is computed for objects as
well as camera movement, and its progressive rendering allows better control over the tradeoff between
frame accuracy and rendering time. Fewer controls are provided for managing the picture files produced by
ranimove, and no facilities for distributed rendering are available other than executing ranimove on differ-
ent machines using the —f option to manually partition the work.

Animation variable assignments appear one per line in rnmfile. The name of the variable is followed by an
equals sign (’=") and its value(s). The end of line may be escaped with a backslash (’\’), though it is not
usually necessary since additional variable values may be given in multiple assignments. Variables that
should have only one value are given in upper case. Variables that may have multiple values are given in
lower case. Variables may be abbreviated by their first three letters. Comments in rnmfile start with a
pound sign (’#’) and proceed to the end of line.

The animation variables, their interpretations and default values are given below.

OCTREE The name of the base octree file, which should be generated by the oconv(1) command using
the —f option. There is no default value for this variable. If no RIF variable is given, the octree
must be specified.

RADIANCE 1/30/03 1

RANIMOVE(1)

RIF

move

RANIMOVE(1)

This variable specifies a rad(1) input file to use as a source of rendering options and other vari-
able settings. If given, ranimate will execute rad and create an options file to control rendering
parameters. Ranimate will also extract default settings for the common variables: OCTREE,
RESOLUTION, and EXPOSURE. Following the file name, overriding variable settings may be
given, which will be passed to rad on the command line. Settings with spaces in them should
be enclosed in quotes. The execution of rad will also update the contents of the octree, if nec-
essary. There is no default value for this variable.

This variable specifies an object (or objects) with a specific motion and/or rendering priority.
Four value arguments are expected for each appearance of this variable. The first is the name
of a parent move object, or "void" if none. If given, the object’s transformation will be
prepended to that of its parent. The second argument is the name of this object, which will be
used to name surfaces it contains, and as a modifier for any child objects that reference it. The
third argument is the transformation string or file for this object. If this argument is enclosed in
quotes and begins with a hyphen (’-’), then it will be interpreted as a static transform specifica-
tion a la xform(1). Otherwise, the argument will be taken as the name of a file that contains
one such transform specification per line, corresponding to frames in the animation. A period
(’.”) may be given if no object transformation is desired. The fourth argument is the name of a
RADIANCE scene file (or files) to be given to xform for transformation. If this argument
begins with an exclamation point (’!’), then it will be interpreted as a command rather than a
file. A final word corresponding to the frame number will be appended to the command, and
its output will be passed to the input of xform for each frame. An optinal fifth argument speci-
fies the rendering priority for this object. Values greater than 1 will result in preferential ren-
dering of this object over other portions of the image when it appears in a frame. Values less
than 1 will cause the rendering to neglect this object in favor of other parts of the image. A
value of 3.0 can be interpreted as saying the viewer is three times more likely to look at this
object than the background. A file may be given rather than a floating point value, and this file
must contain one floating point number per line, corresponding to frames in the animation.

VIEWFILE

END

This variable names a file from which ranimove may extract the view for each frame in the ani-
mation. This file should contain one valid view per frame, starting with frame 1 on line 1. An
exception is made for a view file with only a single view, which is used for every frame of the
animation. In this case, the END variable must also be specified. This variable is required, and
there is no default value.

The final frame number in the animation. The default value is computed from the number of
views in the given VIEWFILE. Normally, this variable will only be given if the view is static.

EXPOSURE

This variable tells ranimate how to adjust the exposure for each frame. As in pfilt, the expo-
sure setting may be given either as a multiplier or as a number of f-stop adjustments (eg. +2 or
-1.5). Alternatively, a file name may be given, which ranimate will interpret as having one
exposure value per line per frame, beginning with frame 1 at line 1. (See also the VIEWFILE
variable, above.) There is no default value for this variable. If it is not given, no exposure
adjustments will be made.

BASENAME

MBLUR

RATE

RADIANCE

The base output file name for the final frames. This string should contain a printf(3) style inte-
ger field to distinguish one frame number from another. The final frames will use this name
with a ".pic"” suffix. The default value is "frame%03d".

This variable specifies the fraction of a frame time that the shutter is simulated as being open
for motion blur. Motion blur is computed by ranimove using image-based rendering methods,
and will not be exact. The default value is 0, meaning no motion blurring.

This variable specifies the animation frame rate, in frames per second. This is needed to com-
pute the animation error visibility. The default value is 8.

1/30/03 2

RANIMOVE(1)

RESOLUTION

RANIMOVE(1)

This variable specifies the desired final picture resolution. If only a single number is given,
this value will be used for both the horizontal and vertical picture dimensions. If two numbers
are given, the first is the horizontal resolution and the second is the vertical resolution. If three

numbers are given, the third is taken

as the pixel aspect ratio for the final picture (a real value).

If the pixel aspect ratio is zero, the exact dimensions given will be those produced. Otherwise,
they will be used as a frame in which the final image must fit. The default value for this vari-

rendering options for the initial, low-quality ray samples.

It may be given either as a list of rendering parameter settings, or as variable settings for the

variable must also be specified.

This variable may be used to specify rendering options for the final, high-quality ray samples.

It may be given either as a list of rendering parameter settings, or as variable settings for the

variable must also be specified.

special options for oconv. See the oconv(1) manual page

for a list of valid options. (The —f option is specified by default.)

able is 640.
lowq This variable may be used to specify
rad command, in which case the RIF
highqg
rad command, in which case the RIF
oconv This variable may be used to specify
EXAMPLES

A minimal input file for ranimove might look like

The rad input file for our static scene:
RIF= tutor.rif

this:

The view file containing one view per frame:

VIEWFILE= anim1.vf
Our central character and its motion:
move= void myguy myguy.xf myguy.rad 2.0

Note that most of the variables are not set in this file. If we only want to see what default values ranimove
would use without actually executing anything, we can invoke it thus:

ranimove -n 0 -e sample.rnm

This will print the variables we have given as well

as default values ranimove has assigned for us.

Usually, we execute ranimove in the background, redirecting the standard output and standard error to a

file:

ranimove sample.rnm >& sample.err &

If we decide that the default values ranimove has chosen for our variables are not all appropriate, we can

add some more assignments to the file:

RES= 1024
MBLUR= .25
RATE= 15
EXP=animl.exp
lowg= QUAL=Low
highg= QUAL=Med

Note the use of abbreviation for variable names.

AUTHOR
Greg Ward

RADIANCE

1/30/03

shoot for 1024x resolution

apply camera motion blur

15 frames/second

adjust exposure according to file
low quality ray sampling
high quality ray sampling

RANIMOVE(1) RANIMOVE(1)

SEE ALSO
oconv(1), pfilt(1), pinterp(1), rad(1), ranimate(1), rpict(1), xform(1)

RADIANCE 1/30/03 4

RCALC(1) RCALC(1)

NAME
rcalc - record calculator

SYNOPSIS
rcalc[-b][-1][-n][-w][—u][—tS][—i format][—o format][—f source][—e expr][—s svar=sval]
file ..

DESCRIPTION

Rcalc transforms “records” from each file according to the given set of literal and relational information.
By default, records are separated by newlines, and contain numeric fields separated by tabs. The —tS option
is used to specify an alternate tab character. A —i format option specifies a template for an alternate input
record format. Format is interpreted as a specification string if it contains a dollar sign *$’. Otherwise, it is
interpreted as the name of the file containing the format specification. In either case, if the format does not
end with a newline, one will be added automatically. A —o format option specifies an alternate output
record format. It is interpreted the same as an input specification. The variable and function definitions in
each —f source file are read and compiled. The —e expr option can be used to define variables on the com-
mand line. Since many of the characters in an expression have special meaning to the shell, it should usu-
ally be enclosed in single quotes. The —s svar=sval option can be used to assign a string variable a string
value. If this string variable appears in an input format, only records with the specified value will be pro-
cessed. The —b option instructs the program to accept only exact matches. By default, tabs and spaces are
ignored except as field separators. The —I option instructs the program to ignore newlines in the input,
basically treating them the same as tabs and spaces. Normally, the beginning of the input format matches
the beginning of a line, and the end of the format matches the end of a line. With the —I option, the input
format can match anywhere on a line. The —w option causes non-fatal error messages (such as division by
zero) to be supressed. The —u option causes output to be flushed after each record. The —n option tells the
program not to get any input, but to produce a single output record. Otherwise, if no files are given, the
standard input is read.

Format files associate names with string and numeric fields separated by literal information in a record. A
numeric field is given in a format file as a dollar sign, followed by curly braces enclosing a variable name:

This is a numeric field: ${vname}
A string variable is enclosed in parentheses:
This is a string field: $(sname)

The program attempts to match literal information in the input format to its input and assign string and
numeric fields accordingly. If a string or numeric field variable appears more than once in the input format,
input values for the corresponding fields must match (ie. have the same value) for the whole record to
match. Numeric values are allowed some deviation, on the order of 0.1%, but string variables must match
exactly. Thus, dummy variables for "don’t care" fields should be given unique names so that they are not
all required to take on the same value.

For each valid input record, an output record is produced in its corresponding format. Output field widths
are given implicitly by the space occupied in the format file, including the dollar sign and braces. This
makes it impossible to produce fields with fewer than four characters. If the —b option is specified, input
records must exactly match the template. By default, the character following each input field is used as a
delimiter. This implies that string fields that are followed by white space cannot contain strings with white
space. Also, numeric fields followed but not preceded by white space will not accept numbers preceded by
white space. Adjacent input fields are advisable only with the —b option. Numeric output fields may con-
tain expressions as well as variables. A dollar sign may appear in a literal as two dollar signs ($$).

The definitions specified in —e and —f options relate numeric output fields to numeric input fields. For the
default record format, a field is a variable of the form $N, where N is the column number, beginning with 1.
Output columns appear on the left-hand side of assignments, input columns appear on the right-hand side.

A variable definition has the form:

var = expression ;

RADIANCE 4/6/99 1

RCALC(1) RCALC(1)

Any instance of the variable in an expression will be replaced with its definition.
An expression contains real numbers, variable names, function calls, and the following operators:
+-*/"

Operators are evaluated left to right. Powers have the highest precedence; multiplication and division are
evaluated before addition and subtraction. Expressions can be grouped with parentheses. All values are
double precision real.

A function definition has the form:
func(al, a2, ..) = expression ;

The expression can contain instances of the function arguments as well as other variables and functions.
Function names can be passed as arguments. Recursive functions can be defined using calls to the defined
function or other functions calling the defined function.

The variable cond, if defined, will determine whether the current input record produces an output record. If
cond is positive, output is produced. If cond is less than or equal to zero, the record is skipped and no other
expressions are evaluated. This provides a convenient method for avoiding inappropriate calculations. The
following library of pre-defined functions and variables is provided:

if(cond, then, else)
if cond is greater than zero, then is evaluated, otherwise else is evaluated. This function is nec-
essary for recursive definitions.

select(N, al, a2, ..)
return aN (N is rounded to the nearest integer). This function provides array capabilities. If N
is zero, the number of available arguments is returned.

rand(x) compute a random number between 0 and 1 based on x.
floor(x) return largest integer not greater than x.

ceil(x) return smallest integer not less than x.

sqrt(x) return square root of x.

exp(x) compute e to the power of x (e approx = 2.718281828).
log(x) compute the logarithm of x to the base e.

log10(x) compute the logarithm of x to the base 10.

Pl the ratio of a circle’s circumference to its diameter.
recno the number of records recognized thus far.
outno the number or records output thus far (including this one).

sin(x), cos(x), tan(x)
trigonometric functions.

asin(x), acos(x), atan(x)
inverse trigonometric functions.

atan2(y, x) inverse tangent of y/x (range -pi to pi).

EXAMPLE
To print the square root of column two in column one, and column one times column three in column two:

rcalc -e *$1=sqrt($2);$2=$1*$3" inputfile > outputfile

AUTHOR
Greg Ward

RADIANCE 4/6/99 2

RCALC(1) RCALC(1)

BUGS
String variables can only be used in input and output formats and —s options, not in definitions.

Tabs count as single spaces inside fields.

SEE ALSO
calc(1), cnt(1), ev(1), lam(1), tabfunc(l), total(1)

RADIANCE 4/6/99 3

REPLMARKS(1) REPLMARKS(1)

NAME
replmarks - replace triangular markers in a RADIANCE scene description

SYNOPSIS
replmarks [—e][-m newmod][—s scale] { —x objfile | —i octree } modname .. [file ..]

DESCRIPTION
Replmarks replaces triangular markers identified by the modifier modname in each scene description file
and writes the result to the standard output. The —x option indicates that each marker should be replaced
by an appropriate xform(1) command on objfile. The —i option indicates that each marker should be
replaced by an instance of octree. One of these two options must appear on the command line, along with
modname, the modifier used by markers in the file.

Multiple modifiers may be given, as long as each one is preceded by its own —x or —i option.

The transformation for each marker is determined by its location and orientation. A marker should be a
right triangle pointing like a half-arrow in the direction of the transformed x-axis, x’. The longest side is
the hypoteneuse, the second longest side is the x’-axis, and the third longest side indicates the direction of
the y’-axis. Any additional sides will be ignored (ie. a quadrilateral may be used instead of a triangle if the
extra side is small). The z’-axis is determined by the cross product of the x” and y’ axes, and the origin is
the common vertex between x” and y’.

The size of the marker is ignored unless the —s option is used, where scale is a multiplier for the x’-axis
length to indicate the total scale factor. For example, a scale value of 5 with a marker length of .5 would
result in a total scale factor of 2.5 to be used in the transformation.

The —e option causes commands in the file to be expanded, and is required to replace markers from com-
mands in the input file. Even with this option, replmarks will not examine objects for markers. Specifi-
cally, an object included by replmarks as a result of a —x expansion will be transferred verbatim, without
regard to any surfaces therein that might have been considered as marks if they were on the main input.

The —m option causes all replaced objects to be given the modifier newmod. Otherwise, the new object sur-
faces will use their originally defined modifiers. A different replacement modifier may be given for each
marker type. The marker modifier name itself is only used to identify markers, and will not appear in the
output in any form.

If no input file is given, the standard input is read.

EXAMPLE
To replace all polygons with the modifier “knobs” in the file input with a transformed ‘““knob.rad”” and
write the result to output:

replmarks -x knob.rad knobs input > output
To use instances of “tree.oct” with scaling set to three times the tree marker length:
replmarks -s 3 -i tree.oct tree input > output

AUTHOR
Greg Ward

SEE ALSO
arch2rad(1), ies2rad(1), xform(1)

RADIANCE 3/24/94 1

RHCOPY(1) RHCOPY(1)

NAME
rhcopy - copy ray information into a holodeck

SYNOPSIS
rhcopy dest_holo [-u][-d] —h src_holo ..
or
rhcopy dest_holo [—u][-d] —p src_pic src_zbf ..

DESCRIPTION
Rhcopy adds ray sample data to the existing holodeck dest_holo. In the first form, the ray samples are
taken from one or more holodeck files given after the —h option. In the second form, the ray samples are
taken from one or more RADIANCE picture files and their depth buffers, which must be paired on the com-
mand line after the —p option.

The —u option turns on duplicate ray checking. In some cases, the same ray may already exist in the desti-
nation holodeck, and it would be redundant to add it. By default, rhcopy does not check for duplicates,
because it takes extra time, and in many invocations is not necessary, as when copying into an empty
holodeck.

The —d option turns off depth checking. Normally, rhcopy checks the OBSTRUCTIONS variable of the
destination holodeck, and if it is set to True, makes sure that all contributing rays start outside each section.
If OBSTRUCTIONS is set to False, then rhcopy makes sure that any contributing rays end outside each
section. If OBSTRUCTIONS is not set, then this option has no effect. (See the rholo(1) man page for a
definition of the OBSTRUCTIONS variable.)

Rcopy cannot be used to create a holodeck -- use rholo for this purpose. For example, to create an empty
holodeck, run rholo without either the —n or —o option. Whatever variables are set by rholo when the new
holodeck is created are the ones that will have effect when later rendering or viewing. Since the ray sample
data may be taken from any source, rholo and rhcopy may be used together to change certain unalterable
holodeck parameters, such as the section grid geometry.

EXAMPLE
To take data from an existing holodeck after changing the section grid:

rholo new.hdk new.hif
rhcopy new.hdk -h old.hdk

To add ray samples from two pictures to the new holodeck:

rhcopy new.hdk -p viewl.pic viewl.zbf view2.pic view2.zbf

NOTES
Rhcopy attempts to place the beams in the holodeck in a good order for quick access, but if the data comes
from multiple sources, the results may not be optimal. For large holodecks, it is sometimes useful to run
the rhoptimize(1) program once all runs of rhcopy are through.

AUTHOR
Greg Ward Larson

ACKNOWLEDGMENT
This work was supported by Silicon Graphics, Inc.

SEE ALSO
getinfo(1), pfilt(1), psign(1), rhinfo(1), rholo(1), rhoptimize(1), rpict(1)

RADIANCE 1/15/99 1

RHINFO(1) RHINFO(1)

NAME
rhinfo - print information about a RADIANCE holodeck file

SYNOPSIS
rhinfo input.hdk

DESCRIPTION
Rhinfo reads the RADIANCE holodeck file input.hdk and writes out the header and section information,
including the grid sizes, number of beams and a histogram of samples/beam for each section.

EXAMPLE
To print the header and section information from scenel.hdk:

rhinfo scenel.hdk

AUTHOR
Greg Ward Larson

ACKNOWLEDGMENT
This work was supported by Silicon Graphics, Inc.

SEE ALSO
getinfo(1), rhcopy(1), rholo(1), rhoptimize(1)

RADIANCE 1/15/99 1

RHOLO(1) RHOLO(1)

NAME

rholo - generate/view a RADIANCE holodeck
SYNOPSIS

rholo [-n npr][—odev J[-w][—i][=f| —r] hdkfile [varfile | + | - [VAR=value ..]]
DESCRIPTION

Rholo is a program for generating and viewing holodeck files. Similar to rview(1), rholo can compute
views interactively, but unlike rview, it reuses any and all information that was previously computed in this
or earlier runs using the given holodeck file, hdkfile.

The —n option sets the number of rtrace(1) processes to start for the calculation. It defaults to zero, which
means that no new rays will be calculated. In general, it is unwise to start more processes than there are
processors on the system. On a multiprocessing system with 4 or more processors, a value one less than the
total should yield optimal interactive rates on a lightly loaded system.

The —o option sets the output device to use for display. Currently, there are at least two display drivers
available, x11 and glx. If no output device is specified, then rholo will start a global calculation of the
holodeck, filling it in as time goes by. The quality of the final holodeck will depend on how long rholo runs
before it is interrupted or runs out of file space or time, according to the variable settings described in the
control variable section, below. If no output device and no processes are specified, rholo creates an empty
holodeck using the given varfile, if present.

The —i option provides for reading from the standard input. Without a display driver, the input should con-
sist only of views, which will be used to limit which parts of the holodeck are rendered in a batch calcula-
tion. With a display driver, most of the commands understood by the driver can be issued either from the
operating window or the standard input. These commands are described together with their window equiv-
alents in the display driver section following the control variable section.

The —f option permits the given holodeck to be clobbered. Without this option, giving both the holodeck
file and a variable file (or "-") will result in an error message if the holodeck exists, since giving both
implies that a new holodeck is being created. (When reusing an existing holodeck, the variable values are
taken from the holodeck header, though some may be overriden by giving a "+" in place of the variable
file.) Also, attempts to clear the holodeck using the interactive "clobber" command will be permitted only
if the —f option is given on the initial command line.

The —r option tells rholo to open the holodeck file read-only, which is the default if there are no ray calcu-
lation processes. If one or more rtrace processes are started with the —n option and the —r option is given
or the specified holodeck is not writable by the user, then any additional rays computed during the session
will be discarded rather than saved to the holodeck file.

One or more holodeck section boundaries are defined along with other parameters in the holodeck file or, if
the holodeck is being created, the rholo control variable file, varfile. These section boundaries define where
you may move, or at least, where you will be able to see, since they determine where computed rays are
stored. Additional variable settings may be added or overridden on the command line following varfile. 1If
no varfile is needed, a holodeck may still be created by giving a "-" on the command line in place of the
variable file. If you wish to override some of the variable settings in an existing holodeck, use a "+", fol-
lowed by the new settings on the command line. Upper case variables specified more than once will result
in a warning message (unless the —w option is present), and the last value given will be the one used, unless
it would conflict with something in an existing holodeck that cannot be changed, such as the section bound-
aries. Changing section boundaries requires creating a new holodeck using rholo without a —n or —o
option, then running rhcopy(1) to fill the new holodeck with the old holodeck’s contents.

The —w option turns off warnings about multiply and misassigned variables.

Rendering variable assignments appear one per line in varfile. The name of the variable is followed by an
equals sign (’=") and its value(s). The end of line may be escaped with a backslash (’\’), though it is not
usually necessary. Variables that should have only one value are given in upper case. Variables that may
have multiple values are given in lower case. Variables may be abbreviated by their first three letters.
Comments in varfile start with a pound sign ("#”) and proceed to the end of line.

RADIANCE 1/14/99 1

RHOLO(1)

RHOLO(1)

CONTROL VARIABLES
The control variables, their interpretations and default values are given below.

OCTREE

RIF

EYESEP

section

geometry

portals

GRID

RADIANCE

The name of the octree file. The default name is the same as hdkfile but with any suffix
replaced by ".oct". This variable may also be read from rad(1) if the "RIF" variable is set.
(See below.)

This variable specifies a rad input file to use as a source of rendering options and other variable
settings. If given, rholo will execute rad and get the rendering options to later pass to rtrace.
Besides prepending the render variable, rholo will also extract default settings for the common
"OCTREE" variable, and the "EYESEP" variable. Following the file name, overriding variable
settings may be given, which will be passed to rad on the command line. Settings with spaces
in them should be enclosed in quotes. The execution of rad will also update the contents of the
octree, if necessary. There is no default value for this variable.

The interocular spacing for stereo viewing. l.e., the world distance between the pupils of the
left and right eyes. There is no default value for this variable.

A section is a 6-sided parallel prism given by an origin and three axis vectors (i.e., 12 floating
point values in world coordinates). The axis vectors define the three edges attached to the ori-
gin vertex, and the other edges and vertices are determined by the parallel wall constraint. A
holodeck section is a region in which the user may freely move about to obtain a view of what
is outside that region. In object rendering mode, a section may instead contain a detailed
object to be viewed from the outside. The grid dimensions for each axis may also be given by
three additional integer arguments following the prism axes. Otherwise, if the grid dimensions
are left out or any are unspecified or zero, the "GRID" variable will be used to determine them
from the section axis lengths. (See below.) There is no default value for this variable, and it is
required. If multiple values are given, they will be used for multiple rendering sections, which
may or may not be connected, but should generally not overlap. The starting view for interac-
tive display will be the center of the first section facing the positive X direction unless
"OBSTRUCTIONS" is set to True, when the view will be placed outside the first section. (See
below for this variable’s definition.) The third axis of the first section is also used as the
default "view up" vector.

This variable is used to associate geometry from an octree file with one or more sections. The
specified octree will be used by certain drivers (e.g., the "ogl" driver) to display simplified
geometry using hardware lighting during motion. If this variable is not set, such drivers will
use the main octree file, which contains all the scene geometry. This can be slow if the scene is
complex, so use simplified geometry with portals (described below) or specify a non-existent
file to turn geometry rendering off. If there is just one setting of this variable, it will be used
for all sections. If there are multiple settings, they will correspond to multiple sections.

This variable is used to associate portal geometry with one or more sections, as required for
simplified geometry in some drivers (e.g., "ogl"). The portal geometry itself is given in one or
more RADIANCE scene files or quoted commands beginning with an exclamation mark (’!”),
and the input may or may not include material definitons. (l.e., the surfaces may be modified
by "void" if there are no materials.) A portal is an imaginary surface that intervenes between a
view and some detailed geometry not included in the current section. (See the "geometry"
variable definition, above.) Portals are often placed in doorways, windows and in front of mir-
rors. Portal geometry may also be placed around local geometry that has been culled due to its
complexity. This specification is necessary in order that the detail geometry be drawn cor-
rectly, and that mirrors will work with virtual distances. (See the definition of "VDISTANCE,"
below.) The orientation of the portal surface geometry is ignored, so they have effect no matter
which way they are facing. If there is just one setting of this variable, it will be used for all
sections. If there are multiple settings, they will correspond to multiple sections.

The default section grid size in world distance units. If any section axis grid is unspecified, the
length of the axis will be divided by this number and rounded up to the next larger integer. The
grid size is a very important determiner of holodeck performance, since the holodeck beam

1/14/99 2

RHOLO(1) RHOLO(1)

index is proportional to average axis grid dimension to the fourth power! If the beam index is
too large, poor file and memory performance will result. If the beam index is too small, the
holodeck resolution will suffer and objects will tend to break up. In general, the grid size
should divide each section wall into 64 or fewer cells for optimal performance. The default
value for this variable is the maximum section axis length divided by 8.

OBSTRUCTIONS

This boolean variable tells rholo whether or not to compute intersections with objects inside
holodeck sections. If it is set to "False", then only objects outside the holodeck sections will be
visible. This is appropriate when you know all sections to be devoid of geometry, or when
some secondary method is available for rendering geometry inside each section. If it is set to
"True," all inside geometry will be visible. There is no default for this variable, which means
that rays will be started at random points within each holodeck section, allowing interior geom-
etry to be partially sampled.

VDISTANCE

This boolean variable determines whether the actual distance to objects is computed, or the vir-
tual distance. If it is set to "True," the virtual distance will be used, which will make reflec-
tions and refractions through smooth, flat objects clear, but will blur the boundaries of those
objects. Note that some drivers cannot render virtual samples without the proper placement of
"portals™ in the scene. (See above for the definition of the "portals” variable.) If it is set to
"False," the reflections and refractions will be blurred, but object boundaries will remain sharp.
The default value for this variable is "False.”

CACHE The memory cache size to use for ray samples during interactive rendering, in Megabytes.
This tuning parameter determines the tradeoff between memory use and disk access time for
interactive display. This value will not affect memory use or performance for global holodeck
rendering if there is no display process. The default cache is effectively set to 16 Megabytes.
If this variable is set to zero, no limit will be placed on memory use and the process will grow
to accommodate all the beams that have been accessed.

DISKSPACE
Specifies the maximum holodeck file size, in Megabytes. Once the holodeck file reaches this
size, rtrace will exit. If there is no display process, rholo will also exit. The default value for
this variable is 0, which is interpreted as no size limit.

TIME Sets the maximum time to run rtrace, in decimal hours. After this length of time, rtrace will
exit. If there is no display process, rholo will also exit. If there is a display process, and rtrace
is restarted with the "restart” command, then the time clock will be restarted as well. The
default value for this variable is 0, which is interpreted as no time limit.

REPORT This variable may be used to specify a interval for progress reports in minutes. If this value is
zero, then progress reports will not be given in intervals, but a final report of the file size and
fragmentation will be issued when the program terminates, along with the number of rays and
packets computed. If a filename is given after the interval, it will be used as the error file for
reports and error messages instead of the standard error. There is no default value for this vari-
able.

render This variable may be used to specify additional options to rtrace. These options will appear
after the options set automatically by rad, and thus will override the default values.

DISPLAY DRIVER
Rholo may be started in interactive mode using the —o option to specify an output display driver. Currently,
three drivers are supported on most machines, glx, ogl and x11. (In addition, there are variations on the first
two drivers for stereo displays, local objects and human tone mapping. These are accessed with some com-
bination of the ’s’, "0’ and ’h’ suffixes, always in that order. E.g., the OpenGL stereo driver with human
tone mapping would be "oglsh".) Each driver accepts simple one-character commands and mouse view
control in its operating window. If the —i option is also given, then the driver will also listen for commands

entered on the standard input. (It is unwise to use the —i option when rholo is run in the background,

RADIANCE 1/14/99 3

RHOLO(1)
because it
commands
VIEW=
last I’
where v
frame °f
pause ’'p

RHOLO(1)

will occassionally stop the process when input is available on the controlling terminal.) The
and their single-key window equivalents are given below.

(mouse)
Modify the current view with the specified parameters. (See the —v* view options in the
rpict(1) manual page for parameter details.) There is no one-character equivalent for this
command in the display window. Instead, the mouse is used to control the current view in the
following ways:

CONTROL MOUSEACTION

(none) left Move forward towards cursor position

(none) middle Rotate in place (usually safe)

(none) right Move backward away from cursor position

shift left Orbit left around cursor position

shift middle Orbit skyward

cntl middle Orbit earthward

shift right Orbit right around cursor position

cntl+shift any Frame focus by dragging rectangle

For all movements but rotating in place, the cursor must be placed over some bit of visible
geometry, otherwise the driver has no reference point from which to work. It is best to just
experiment with these controls until you learn to fly safely in your model. And if you run into
trouble, the "last” command is very useful. (See below.)

Return to the previous view. Some drivers will save up multiple views in a history, but you are
guaranteed at least one.

Print the current view parameters to the standard output. This is useful for finding out where
you are, or for saving specific views in a keyframe file for animations or returning to later.

Change the calculation focus. If the "frame" command is given with no arguments on the stan-
dard input, it is equivalent to the interactive ’F’ command, which releases the current calcula-
tion focus. If the "frame” command is followed by a relative horizontal and vertical position
(specified as floating point values between 0 and 1), then the new focus is about this position
on the screen (where 0 0 is at the lower left of the display). This is equivalent to the interactive
’f” command, which sets the focus about the current window cursor position. If four relative
coordinates are given, they are assumed to mean the minimum horizontal and vertical positon,
and the maximum horizontal and vertical position, in that order. This is equivalent to dragging
the mouse over a rectangular area with the “cntl+shift” keys held down.

Pause the ray calculation temporarily.

resume <cr>

Resume the ray calculation.

redraw L

kill ’K’

Redraw the current view from values calculated and stored in the holodeck. When executed
from the display window via *"L’, the effect may be slightly different, since all stored informa-
tion will be flushed.

Terminate the ray calculation process. This is usually unnecessary, but is provided for special
purpose applications.

restart 'R’

RADIANCE

Restart the ray calculation process. If the "RIF" variable has been set, rad will be run first to
assure that the octree is up to date.

1/14/99 4

RHOLO(1)
clobber
quit ’q’

RHOLO(1)

7C1

Clobber the holodeck contents, deleting all that has been calculated before. To get an interac-
tive dissolve of changes to the scene description, use the sequence "kill," “clobber," "restart."
This command will be honored by rholo only if it was started with the —f option.

Quit rholo. The ray tracing calculation is terminated and all values are flushed to the holodeck
file. This is the normal way to exit the program.

In addition to these standard commands, all drivers offer the following supplimentary controls.

EXAMPLES

Fix the head height. All mouse-controlled view motions will be adjusted so that the head
height does not change (where vertical is determined by the current view up vector).

Release the head height, allowing it to change again during mouse-controlled movements.

Redraw the current view, recomputing the tone mapping in the process. This is useful if the
current view is too light or too dark. (On an 8-bit display, it may be necessary to redraw the
screen a couple of times to get the best image.) The ""L" command is a stronger type of
redraw, since it will use only rays in the current view to determine the tone mapping, rather
than a history of rays drawn from the rholo server.

The following shows a minimal holodeck control variable file:

RIF= sample.rif # rad input file
section=224 500 070 003 # section prism boundaries

Technically, the "RIF" setting is not necessary, but the results are much better when rholo is used in associ-
ation with rad to control the rendering parameters.

Here is a slightly more sophisticated example:

RIF=electric.rif
section=7435 1500 0100 005

GRID=.75

CACHE= 20 # cache size in megabytes

TIME= 120 # maximum time in hours

DISK= 200 # maximum file size in megabytes
REPORT= 60 elect.her

OBST= False

VDIST= False

We can invoke rholo on the above file to compute a hologram overnight in batch mode:
rholo -n 1 elect.hdk elect.hif TIME=12 &

This will report progress every hour to "elect.her".

The next morning, we can look at the holodeck interactively:
rholo -n 1 -0 x11 elect.hdk &

If the previous command were still running, the above command would fail because the permissions on the
holodeck would not grant access. To terminate rholo without losing any computed information, use the
kill(1) command to send an interrupt or terminate signal to the rholo process listed by ps(1). If the system
goes down or something dire happens to rholo, it may be necessary to restore read/write permission on the
holodeck using chmod(1). Do not do this, however, unless you are absolutely sure that rholo is no longer
running on the holodeck. (See the ps man page on how to check for running processes. The file modifica-
tion date as reported by Is(1) is another clue.)

To view the holodeck without invoking a new ray calculation, leave off the —n option. To compute the
holodeck with multiple processes on a multiprocessing system, use a higher number for the —n option.
(Don’t use more processes than you have processors, though, because you’ll only slow things down.)

RADIANCE

1/14/99 5

RHOLO(1) RHOLO(1)

To allow interactive control of rholo from another process, the following invocation will override the file
size limit and permit the holodeck to be clobbered by a command entered on the standard input:

rholo -n 1 -0 x11 -i -f elect.hdk + DISK=0
To create an empty holodeck from settings on the command line:
rholo new.hdk - RIF=sample.rif "section=224 800 0100 00 3"

NOTES

Each time rays are added to a beam, that beam’s position in the holodeck file is released and a new position
is found. After substantial computation on a holodeck, especially over several runs, the holodeck file may
become fragmented, leaving holes that take up space without contributing useful information. The percent-
age fragmentation is reported when the REPORT variable is set and some calculation has taken place.
When this percentage gets high on a large holodeck (above 15% or so), it is a good idea to run the rhopti-
mize(1) program once batch rendering is complete to close the gaps and collect beams into groups for
quicker rendering access. Rholo will print periodic warnings when the fragmentation exceeds 20%.

AUTHOR
Greg Ward Larson

ACKNOWLEDGMENT
This work was supported by Silicon Graphics, Inc.

BUGS
Global participating media are not handled correctly, though local participating media will usually work.

SEE ALSO
chmod(1), Is(1), ps(1), rad(1), ranimate(1), rhcopy(1), rhinfo(1), rhoptimize(1), rhpict(1), rpict(1), rtrace(1),
rview(1)

RADIANCE 1/14/99 6

RHOPTIMIZE(L) RHOPTIMIZE(L)

NAME
rhoptimize - optimize beam locations in holodeck file

SYNOPSIS
rhoptimize [—u] src_holo [dest_holo]

DESCRIPTION

Rhoptimize optimizes beam positions and eliminates fragment waste in the holodeck file src_holo, writing
the result to dest_holo, or back into src_holo if only one argument is given. This may improve rendering
speed on large holodecks, which tend to have widely dispersed beam positions that cause delays due to long
file seeks. It may also reduce the size of the file, since large holodecks become fragmented as they fill up
with new ray samples. (Use the rhinfo(1) program to determine holodeck file fragmentation.) The —u
option adds a check to make sure that each ray sample is unique, i.e., the same sample is never given twice.
This check is usually unnecessary, but may eliminate redundant samples from some holodeck files.

EXAMPLE
To optimize the beam order in old.hdk and write the results to new.hdk:

rhoptimize old.hdk new.hdk
To optimize beam order in scene.hdk:
rhoptimize scene.hdk

NOTES
If rhoptimize is given only one file argument, it creates a temporary file in the same directory, and moves it
onto the original file once it has successfully completed its operation. If the operation fails for some rea-
son, the temporary file is removed and the original holodeck is left unchanged.

This program generally takes several minutes to run and offers no progress reports.

FILES
rho????.hdk temporary file to hold new holodeck

AUTHOR
Greg Ward Larson

ACKNOWLEDGMENT
This work was supported by Silicon Graphics, Inc.

SEE ALSO
getinfo(1), pfilt(1), psign(1), rhcopy(1), rhinfo(1), rholo(1), rpict(1)

RADIANCE 1/25/99 1

RHPICT(L)

NAME

RHPICT(L)

rhpict - render a RADIANCE picture from a holodeck file

SYNOPSIS

rhpict [options] holodeck

DESCRIPTION

Rhpict generates one or more pictures from the RADIANCE holodeck file holodeck and sends them to the
standard output. The —o option may be used to specify an alternate output file. Other options specify the
viewing parameters and provide some control over the calculation.

The view as well as some of the other controls are shared in common with the rpict(1) command. The
options that are unique to rhpict are given first, followed by the more familiar ones.

-S

-rrf

-X res
-y res

-pa rat

-pe expval

-vitt

-Vp XYz

-vd xd yd zd

-vu xd yd zd

-vh val

-vv val

-vo val

RADIANCE

Use the smooth resampling algorithm, which amounts to linear interpolation between ray sam-
ples with additional edge detection along color and object boundaries. This is the default.

Use random resampling, where rf is a fraction from 0 to 1 indicating the desired degree of ran-
domness. A random fraction of O is not the same as smooth resampling, because there is no
linear interpolation, just Voronoi regions. Values greater than 1 produce interesting underwater
effects.

Set the maximum x resolution to res.
Set the maximum y resolution to res.

Set the pixel aspect ratio (height over width) to rat. Either the x or the y resolution will be
reduced so that the pixels have this ratio for the specified view. If rat is zero, then the x and y
resolutions will adhere to the given maxima.

Set the exposure value for the output pictures to expval. Since filtering is performed by rhpict,
there is little sense in passing the output through pfilt(1), other than changing the exposure.
This option eliminates that need. The value may be specified either as a multiplier, or as a
number f-stops preceeded by a ’+’ or ’-” character.

Set view type to t. If tis ’v’, a perspective view is selected. If tis ’I’, a parallel view is used.
A cylindrical panorma may be selected by setting t to the letter ’c’. This view is like a standard
perspective vertically, but projected on a cylinder horizontally (like a soupcan’s-eye view).
Two fisheye views are provided as well; ’h’ yields a hemispherical fisheye view and ’a’ results
in angular fisheye distortion. A hemispherical fisheye is a projection of the hemisphere onto a
circle. The maximum view angle for this type is 180 degrees. An angular fisheye view is
defined such that distance from the center of the image is proportional to the angle from the
central view direction. An angular fisheye can display a full 360 degrees. Note that there is no
space between the view type option and its single letter argument.

Set the view point to x y z. This is the focal point of a perspective view or the center of a par-
allel projection.

Set the view direction vector to xd yd zd .

Set the view up vector (vertical direction) to xd yd zd .

Set the view horizontal size to val. For a perspective projection (including fisheye views), val
is the horizontal field of view (in degrees). For a parallel projection, val is the view width in
world coordinates.

Set the view vertical size to val.

Set the view fore clipping plane at a distance of val from the view point. The plane will be per-
pendicular to the view direction for perspective and parallel view types. For fisheye view
types, the clipping plane is actually a clipping sphere, centered on the view point with radius

3/10/99 1

RHPICT(L)

-va val

-vs val

-vl val

-vf file

-S seqgstart

-0 fspec

-w
EXAMPLE

RHPICT(L)

val. Objects in front of this imaginary surface will not be visible. This may be useful for see-
ing through walls (to get a longer perspective from an exterior view point) or for incremental
rendering. A value of zero implies no foreground clipping. A negative value produces some
interesting effects, since it creates an inverted image for objects behind the viewpoint. This
possibility is provided mostly for the purpose of rendering stereographic holograms.

Set the view aft clipping plane at a distance of val from the view point. Like the view fore
plane, it will be perpendicular to the view direction for perspective and parallel view types.
For fisheye view types, the clipping plane is actually a clipping sphere, centered on the view
point with radius val. Objects behind this imaginary surface will not be visible. A value of
zero means no aft clipping, and is the only way to see infinitely distant objects such as the sky.

Set the view shift to val. This is the amount the actual image will be shifted to the right of the
specified view. This is option is useful for generating skewed perspectives or rendering an
image a piece at a time. A value of 1 means that the rendered image starts just to the right of
the normal view. A value of -1 would be to the left. Larger or fractional values are permitted
as well.

Set the view lift to val. This is the amount the actual image will be lifted up from the specified
view, similar to the —vs option.

Get view parameters from file, which may be a picture or a file created by rview (with the
"view" command).

Instead of generating a single picture based only on the view parameters given on the com-
mand line, this option causes rhpict to read view options from the standard input and for each
line containing a valid view specification, generate a corresponding picture. Seqstart is a posi-
tive integer that will be associated with the first output frame, and incremented for successive
output frames. By default, each frame is concatenated to the output stream, but it is possible to
change this action using the —o option (described below). Multiple frames may be later
extracted from a single output stream using the ra_rgbe(1) command.

Send the picture(s) to the file(s) given by fspec instead of the standard output. If this option is
used in combination with —S and fspec contains an integer field for printf(3) (eg., "%03d") then
the actual output file name will include the current frame number.

Turn off warning messages.

rhpict -vp 105 3 -vd 1 -.5 0 scene.hdk > scene.pic

rpict -S 1 -o frame%02d.pic scene.hdk < keyframes.vf

AUTHOR
Greg Ward

SEE ALSO

getinfo(), pfilt(1), pinterp(1), printf(3), ra_rgbe(1), rholo(1), rpict(1), rview(1)

RADIANCE

3/10/99 2

RPICT(L) RPICT(L)

NAME
rpict - generate a RADIANCE picture

SYNOPSIS
rpict [options] [$EVAR] [@file] [octree]
rpict [options] —defaults

DESCRIPTION

Rpict generates a picture from the RADIANCE scene given in octree and sends it to the standard output. If
no octree is given, the standard input is read. (The octree may also be specified as the output of a command
enclosed in quotes and preceded by a “I’.) Options specify the viewing parameters as well as giving some
control over the calculation. Options may be given on the command line and/or read from the environment
and/or read from a file. A command argument beginning with a dollar sign (’$’) is immediately replaced
by the contents of the given environment variable. A command argument beginning with an at sign @) is
immediately replaced by the contents of the given file.

In the second form shown above, the default values for the options (modified by those options present) are
printed with a brief explanation.

Most options are followed by one or more arguments, which must be separated from the option and each
other by white space. The exceptions to this rule are the —vt option and the boolean options. Normally, the
appearance of a boolean option causes a feature to be "toggled"”, that is switched from off to on or on to off
depending on its previous state. Boolean options may also be set explicitly by following them immediately
with a ’+’ or ’-’, meaning on or off, respectively. Synonyms for *+’ are any of the characters "yYtT1", and
synonyms for ’-* are any of the characters "nNfF0". All other characters will generate an error.

-vitt

Set view type to t. If tis ’v’, a perspective view is selected. If tis ’I’, a parallel view is used.
A cylindrical panorma may be selected by setting t to the letter ’c’. This view is like a standard
perspective vertically, but projected on a cylinder horizontally (like a soupcan’s-eye view).
Two fisheye views are provided as well; ’h’ yields a hemispherical fisheye view and ’a’ results
in angular fisheye distortion. A hemispherical fisheye is a projection of the hemisphere onto a
circle. The maximum view angle for this type is 180 degrees. An angular fisheye view is
defined such that distance from the center of the image is proportional to the angle from the
central view direction. An angular fisheye can display a full 360 degrees. Note that there is no
space between the view type option and its single letter argument.

-vpxyz Setthe view pointto x y z. This is the focal point of a perspective view or the center of a par-
allel projection.

-vd xd yd zd
Set the view direction vector to xd yd zd .

-vu xd yd zd
Set the view up vector (vertical direction) to xd yd zd .

-vh val Set the view horizontal size to val. For a perspective projection (including fisheye views), val
is the horizontal field of view (in degrees). For a parallel projection, val is the view width in
world coordinates.

-vv val Set the view vertical size to val.

-vo val Set the view fore clipping plane at a distance of val from the view point. The plane will be per-
pendicular to the view direction for perspective and parallel view types. For fisheye view
types, the clipping plane is actually a clipping sphere, centered on the view point with radius
val. Objects in front of this imaginary surface will not be visible. This may be useful for see-
ing through walls (to get a longer perspective from an exterior view point) or for incremental
rendering. A value of zero implies no foreground clipping. A negative value produces some
interesting effects, since it creates an inverted image for objects behind the viewpoint. This
possibility is provided mostly for the purpose of rendering stereographic holograms.

RADIANCE 2/26/99 1

RPICT(L)

-va val

-vs val

-vl val

-vf file

-X res
-y res

-pa rat

-ps size

-pt frac

-pj frac

-pm frac

-dj frac

-ds frac

-dt frac

RADIANCE

RPICT(L)

Set the view aft clipping plane at a distance of val from the view point. Like the view fore
plane, it will be perpendicular to the view direction for perspective and parallel view types.
For fisheye view types, the clipping plane is actually a clipping sphere, centered on the view
point with radius val. Objects behind this imaginary surface will not be visible. A value of
zero means no aft clipping, and is the only way to see infinitely distant objects such as the sky.

Set the view shift to val. This is the amount the actual image will be shifted to the right of the
specified view. This is option is useful for generating skewed perspectives or rendering an
image a piece at a time. A value of 1 means that the rendered image starts just to the right of
the normal view. A value of -1 would be to the left. Larger or fractional values are permitted
as well.

Set the view lift to val. This is the amount the actual image will be lifted up from the specified
view, similar to the —vs option.

Get view parameters from file, which may be a picture or a file created by rview (with the
"view" command).

Set the maximum x resolution to res.
Set the maximum y resolution to res.

Set the pixel aspect ratio (height over width) to rat. Either the x or the y resolution will be
reduced so that the pixels have this ratio for the specified view. If rat is zero, then the x and y
resolutions will adhere to the given maxima.

Set the pixel sample spacing to the integer size. This specifies the sample spacing (in pixels)
for adaptive subdivision on the image plane.

Set the pixel sample tolerance to frac. If two samples differ by more than this amount, a third
sample is taken between them.

Set the pixel sample jitter to frac. Distributed ray-tracing performs anti-aliasing by randomly
sampling over pixels. A value of one will randomly distribute samples over full pixels. A
value of zero samples pixel centers only. A value between zero and one is usually best for low-
resolution images.

Set the pixel motion blur to frac. In an animated sequence, the exact view will be blurred
between the previous view and the next view as though a shutter were open this fraction of a
frame time. (See the —S option regarding animated sequences.) The first view will be blurred
according to the difference between the initial view set on the command line and the first view
taken from the standard input. It is not advisable to use this option in combination with the
pmblur(1) program, since one takes the place of the other. However, it may improve results
with pmblur to use a very small fraction with the —pm option, to avoid the ghosting effect of
too few time samples.

Set the direct jittering to frac. A value of zero samples each source at specific sample points
(see the —ds option below), giving a smoother but somewhat less accurate rendering. A posi-
tive value causes rays to be distributed over each source sample according to its size, resulting
in more accurate penumbras. This option should never be greater than 1, and may even cause
problems (such as speckle) when the value is smaller. A warning about aiming failure will
issued if frac is too large. It is usually wise to turn off image sampling when using direct jitter
by setting -ps to 1.

Set the direct sampling ratio to frac. A light source will be subdivided until the width of each
sample area divided by the distance to the illuminated point is below this ratio. This assures
accuracy in regions close to large area sources at a slight computational expense. A value of
zero turns source subdivision off, sending at most one shadow ray to each light source.

Set the direct threshold to frac. Shadow testing will stop when the potential contribution of at
least the next and at most all remaining light source samples is less than this fraction of the
accumulated value. (See the —dc option below.) The remaining light source contributions are

2/26/99 2

RPICT(L)

—dc frac

-dr N

-dp D

-sj frac

-st frac

-bv

RPICT(L)

approximated statistically. A value of zero means that all light source samples will be tested
for shadow.

Set the direct certainty to frac. A value of one guarantees that the absolute accuracy of the
direct calculation will be equal to or better than that given in the —dt specification. A value of
zero only insures that all shadow lines resulting in a contrast change greater than the —dt speci-
fication will be calculated.

Set the number of relays for secondary sources to N. A value of 0 means that secondary
sources will be ignored. A value of 1 means that sources will be made into first generation sec-
ondary sources; a value of 2 means that first generation secondary sources will also be made
into second generation secondary sources, and so on.

Set the secondary source presampling density to D. This is the number of samples per stera-
dian that will be used to determine ahead of time whether or not it is worth following shadow
rays through all the reflections and/or transmissions associated with a secondary source path.
A value of 0 means that the full secondary source path will always be tested for shadows if it is
tested at all.

Boolean switch for light source visibility. With this switch off, sources will be black when
viewed directly although they will still participate in the direct calculation. This option may be
desirable in conjunction with the —i option so that light sources do not appear in the output.

Set the specular sampling jitter to frac. This is the degree to which the highlights are sampled
for rough specular materials. A value of one means that all highlights will be fully sampled
using distributed ray tracing. A value of zero means that no jittering will take place, and all
reflections will appear sharp even when they should be diffuse. This may be desirable when
used in combination with image sampling (see —ps option above) to obtain faster renderings.

Set the specular sampling threshold to frac. This is the minimum fraction of reflection or
transmission, under which no specular sampling is performed. A value of zero means that
highlights will always be sampled by tracing reflected or transmitted rays. A value of one
means that specular sampling is never used. Highlights from light sources will always be cor-
rect, but reflections from other surfaces will be approximated using an ambient value. A sam-
pling threshold between zero and one offers a compromise between image accuracy and ren-
dering time.

Boolean switch for back face visibility. With this switch off, back faces of opaque objects will
be invisible to all rays. This is dangerous unless the model was constructed such that all sur-
face normals on opaque objects face outward. Although turning off back face visibility does
not save much computation time under most circumstances, it may be useful as a tool for scene
debugging, or for seeing through one-sided walls from the outside. This option has no effect
on transparent or translucent materials.

-av red grn blu

-aw N

-ab N

RADIANCE

Set the ambient value to a radiance of red grn blu . This is the final value used in place of an
indirect light calculation. If the number of ambient bounces is one or greater and the ambient
value weight is non-zero (see -aw and -ab below), this value may be modified by the computed
indirect values to improve overall accuracy.

Set the relative weight of the ambient value given with the -av option to N. As new indirect
irradiances are computed, they will modify the default ambient value in a moving average, with
the specified weight assigned to the initial value given on the command and all other weights
set to 1. If a value of 0 is given with this option, then the initial ambient value is never modi-
fied. This is the safest value for scenes with large differences in indirect contributions, such as
when both indoor and outdoor (daylight) areas are visible.

Set the number of ambient bounces to N. This is the maximum number of diffuse bounces
computed by the indirect calculation. A value of zero implies no indirect calculation.

2/26/99 3

RPICT(L)

-ar res

-aa acc

-ad N

-as N

-af fname

-ae mat

-ai mat

-aE file

-al file

RPICT(L)

Set the ambient resolution to res. This number will determine the maximum density of ambi-
ent values used in interpolation. Error will start to increase on surfaces spaced closer than the
scene size divided by the ambient resolution. The maximum ambient value density is the scene
size times the ambient accuracy (see the —aa option below) divided by the ambient resolution.
The scene size can be determined using getinfo(1) with the —d option on the input octree. A
value of zero is interpreted as unlimited resolution.

Set the ambient accuracy to acc. This value will approximately equal the error from indirect
illuminance interpolation. A value of zero implies no interpolation.

Set the number of ambient divisions to N. The error in the Monte Carlo calculation of indirect
illuminance will be inversely proportional to the square root of this number. A value of zero
implies no indirect calculation.

Set the number of ambient super-samples to N. Super-samples are applied only to the ambient
divisions which show a significant change.

Set the ambient file to fname. This is where indirect illuminance will be stored and retrieved.
Normally, indirect illuminance values are kept in memory and lost when the program finishes
or dies. By using a file, different invocations can share illuminance values, saving time in the
computation. Also, by creating an ambient file during a low resolution rendering, better results
can be obtained in a second high resolution pass. The ambient file is in a machine-independent
binary format which may be examined with lookamb(1).

The ambient file may also be used as a means of communication and data sharing between
simultaneously executing processes. The same file may be used by multiple processes, possi-
bly running on different machines and accessing the file via the network (ie. nfs(4)). The net-
work lock manager lockd(8) is used to insure that this information is used consistently.

If any calculation parameters are changed or the scene is modified, the old ambient file should
be removed so that the calculation can start over from scratch. For convenience, the original
ambient parameters are listed in the header of the ambient file. Getinfo(1) may be used to print
out this information.

Append mat to the ambient exclude list, so that it will not be considered during the indirect cal-
culation. This is a hack for speeding the indirect computation by ignoring certain objects. Any
object having mat as its modifier will get the default ambient level rather than a calculated
value. Any number of excluded materials may be given, but each must appear in a separate
option.

Add mat to the ambient include list, so that it will be considered during the indirect calculation.
The program can use either an include list or an exclude list, but not both.

Same as —ae, except read materials to be excluded from file. The RAYPATH environment
variable determines which directories are searched for this file. The material names are sepa-
rated by white space in the file.

Same as —ai, except read materials to be included from file.

-me rext gext bext

Set the global medium extinction coefficient to the indicated color, in units of 1/distance (dis-
tance in world coordinates). Light will be scattered or absorbed over distance according to this
value. The ratio of scattering to total scattering plus absorption is set by the albedo parameter,
described below.

-ma ralb galb balb

RADIANCE

Set the global medium albedo to the given value between 0 0 0 and 1 1 1. A zero value
means that all light not transmitted by the medium is absorbed. A unitary value means that all
light not transmitted by the medium is scattered in some new direction. The isotropy of scat-
tering is determined by the Heyney-Greenstein parameter, described below.

2/26/99 4

RPICT(L)

-mg gecc

RPICT(L)

Set the medium Heyney-Greenstein eccentricity parameter to gecc. This parameter determines
how strongly scattering favors the forward direction. A value of 0 indicates perfectly isotropic
scattering. As this parameter approaches 1, scattering tends to prefer the forward direction.

—ms sampdist

-Ir N

-lw frac

-S seqgstart

-0 fspec

-r fn

-ro fspec

RADIANCE

Set the medium sampling distance to sampdist, in world coordinate units. During source scat-
tering, this will be the average distance between adjacent samples. A value of 0 means that
only one sample will be taken per light source within a given scattering volume.

Boolean switch to compute irradiance rather than radiance values. This only affects the final
result, substituting a Lambertian surface and multiplying the radiance by pi. Glass and other
transparent surfaces are ignored during this stage. Light sources still appear with their original
radiance values, though the —dv option (above) may be used to override this.

Limit reflections to a maximum of N.

Limit the weight of each ray to a minimum of frac. During ray-tracing, a record is kept of the
final contribution a ray would have to the image. If it is less then the specified minimum, the
ray is not traced.

Instead of generating a single picture based only on the view parameters given on the com-
mand line, this option causes rpict to read view options from the standard input and for each
line containing a valid view specification, generate a corresponding picture. This option is
most useful for generating animated sequences, though it may also be used to control rpict
from a remote process for network-distributed rendering. Segstart is a positive integer that will
be associated with the first output frame, and incremented for successive output frames. By
default, each frame is concatenated to the output stream, but it is possible to change this action
using the —o option (described below). Multiple frames may be later extracted from the output
using ra_rgbe(1).

Note that the octree may not be read from the standard input when using this option.

Send the picture(s) to the file(s) given by fspec instead of the standard output. If this option is
used in combination with —S and fspec contains an integer field for printf(3) (eg. "%03d") then
the actual output file name will include the current frame number. Rpict will not allow a pic-
ture file to be clobbered (overwritten) with this option. If an image in a sequence already exists
(=S option), rpict will skip until it reaches an image that doesn’t, or the end of the sequence.
This is useful for running rpict on multiple machines or processors to render the same
sequence, as each process will skip to the next frame that needs rendering.

Recover pixel information from the file fn. If the program gets killed during picture genera-
tion, the information may be recovered using this option. The view parameters and picture
dimensions are also recovered from fn if possible. The other options should be identical to
those which created fn, or an inconsistent picture may result. If fn is identical to the file speci-
fication given with the —o option, rpict will rename the file prior to copying its contents. This
insures that the old file is not overwritten accidentally. (See also the —ro option, below.)

If fn is an integer and the recover option is used in combination with the —S option, then rpict
skips a number of view specifications on its input equal to the difference between fn and seqs-
tart. Rpict then performs a recovery operation on the file constructed from the frame number
fn and the output file specification given with the —o option. This provides a convenient mech-
anism for recovering in the middle of an aborted picture sequence.

The recovered file will be removed if the operation is successful. If the recover operation fails
(due to lack of disk space) and the output file and recover file specifications are the same, then
the original information may be left in a renamed temporary file. (See FILES section, below.)

This option causes pixel information to be recovered from and subsequently returned to the
picture file fspec. The effect is the same as specifying identical recover and output file names
with the —r and —o options.

2/26/99 5

RPICT(1) RPICT(1)
-z fspec Write pixel distances out to the file fspec. The values are written as short floats, one per pixel
in scanline order, as required by pinterp(1). Similar to the —o option, the actual file name will
be constructed using printf and the frame number from the —S option. If used with the —r
option, —z also recovers information from an aborted rendering.

-P pfile Execute in a persistent mode, using pfile as the control file. This option must be used together
with =S, and is incompatible with the recover option (—r). Persistent execution means that
after reaching end-of-file on its input, rpict will fork a child process that will wait for another
rpict command with the same —P option to attach to it. (Note that since the rest of the com-
mand line options will be those of the original invocation, it is not necessary to give any argu-
ments besides —P for subsequent calls.) Killing the process is achieved with the kill(1) com-
mand. (The process ID in the first line of pfile may be used to identify the waiting rpict pro-
cess.) This option may be less useful than the —PP variation, explained below.

—-PP pfile Execute in continuous-forking persistent mode, using pfile as the control file. The difference
between this option and the —P option described above is the creation of multiple duplicate
processes to handle any number of attaches. This provides a simple and reliable mechanism of
memory sharing on most multiprocessing platforms, since the fork(2) system call will share
memory on a copy-on-write basis. This option may be used with rpiece(1) to efficiently render
a single image using multiple processors on the same host.

-t sec Set the time between progress reports to sec. A progress report writes the number of rays
traced, the percentage completed, and the CPU usage to the standard error. Reports are given
either automatically after the specified interval, or when the process receives a continue
(-CONT) signal (see kill(1)). A value of zero turns automatic reporting off.

-e efile Send error messages and progress reports to efile instead of the standard error.

-w Boolean switch for warning messages. The default is to print warnings, so the first appearance
of this option turns them off.

EXAMPLE
rpict -vp 10 5 3 -vd 1 -.5 0 scene.oct > scene.pic
rpict -S 1 -o frame%02d.pic scene.oct < keyframes.vf
ENVIRONMENT
RAYPATH the directories to check for auxiliary files.
FILES
Jusr/tmp/rEX XXX XX common header information for picture sequence
FFXXX XXX temporary name for recover file
DIAGNOSTICS

If the program terminates from an input related error, the exit status will be 1. A system related error

results in an

exit status of 2. If the program receives a signal that is caught, it will exit with a status of 3. In

each case, an error message will be printed to the standard error, or to the file designated by the —e option.

AUTHOR
Greg Ward

SEE ALSO

getinfo(1), lookamb(1), oconv(1), pfilt(1), pinterp(1), pmblur(1), printf(3), ra_rgbe(1), rad(1), rtrace(1),

rview(1)

RADIANCE

2/26/99 6

RPIECE(L) RPIECE(L)

NAME
rpiece - render pieces of a RADIANCE picture

SYNOPSIS
rpiece [—v][-x xres][=y yres][=X xdiv][=Y ydiv][—=F|R syncfile][=T timelim] [$EVAR] [@file
][rpict options] —o picture octree

DESCRIPTION
Rpiece renders a RADIANCE picture a piece at a time, calling rpict(1) to do the actual work. This is useful
for running multiple rpict processes on cooperating machines to render a single picture, which is a shared
file specified with the —o option. The overall picture dimensions will be xres by yres (or smaller, depending
on the —pa option and other view options), and the picture will be rendered in xdiv by ydiv pieces.

There are two basic methods for telling rpiece which piece(s) of a picture to render. The explicit method is
to write on the standard input the X and Y position of the desired piece(s), where X runs from zero to
xdiv—=1 and Y runs from zero to ydiv—1. (The lower left piece of a picture corresponds to (0,0) in this sys-
tem.) Alternatively, the implicit specification method uses a synchronization file to determine which piece
is to be rendered next. Specified with the —F option, syncfile initially contains the values for xdiv and ydiv,
so the —X and —Y options are unnecessary. (However, they are used if syncfile does not exist.) The first
rpiece process puts a lock on syncfile and modifies its contents before starting work on the first piece of the
image. It writes the X and Y position of the piece it will work on, so the next rpiece process to modify
syncfile will start on the next piece. (When it finishes with its piece, it appends the index to the end of sync-
file.) This procedure continues until all the pieces are done, at which point all of the rpiece processes will
terminate.

The —R option may be used instead of —F if some of the pieces were not properly finished by previous
(killed) runs of rpiece. This option should be used by at most one rpiece process, which must be started
first and with no other rpiece processes running or else it will rerender the same pieces other processes
have begun. Once the recover process is started, you may start other rpiece processes using the —F option
to run simultaneously. If some processes die during execution, leaving one or more half-finished pieces in
the picture even though the other processes think the work is done, you may run a single rpiece with the —R
option by itself to repair the holes.

The —v flag switches on verbose mode, where rpiece reports to the standard output after each piece begins
and after each piece is finished.

Options may be given on the command line and/or read from the environment and/or read from a file. A
command argument beginning with a dollar sign (’$’) is immediately replaced by the contents of the given
environment variable. A command argument beginning with an at sign (@) is immediately replaced by
the contents of the given file.

EXAMPLE
First rpiece process is started on the machine "goober":

goober% echo 1 8 > syncfile
goober% echo -F syncfile -x 1024 -y 1024 -vf view -0 picture octree > args
goober% rpiece @args &

Second rpiece processes is started on the machine "sucker":
sucker% rpiece @args &

NOTES

Due to NFS file buffering, the network lock manager is employed to guarantee consistency in the output file
even though non-overlapping writes are used. This would tend to slow the process down if rpiece were to
wait for this I/O to complete before starting on the next piece, so rpiece forks separate processes to hang
around waiting for I/0O completion. The number of processes thus designated is set by the MAXFORK
macro in the program (compiled in the src/util directory). If the fork call is slow on a system, it may actu-
ally be better to set MAXFORK to zero. In other cases, the network lock manager may be so slow that this
value should be increased to get the best utilization.

The output picture is not run-length encoded, and can be quite large. The approximate size (in kilobytes)

RADIANCE 10/1/98 1

RPIECE(L) RPIECE(L)

can be computed by the simple formula:
filesize = xres*yres/256

Make sure that there is enough space on the filesystem to hold the entire picture before beginning. Once
the picture is finished, the ra_rgbe(1) program with the -r option may be used to convert to a run-length
encoded picture for more efficient storage, although pfilt(1) or any of the other Radiance picture filters will
do the same thing.

The ALRM signal may be used to gracefully terminate an rpiece process after it finishes the current piece.
This permits other currently running or subsequently started rpiece process(es) to continue rendering the
picture without loss. The —T option will send the ALRM signal to rpiece after the specified number of
(decimal) hours. This is the best way to force a time limit on the computation, since information will not
be lost, though the process may continue for some time afterwards to finish its current piece.

BUGS
This program may not work on some systems whose NFS lock manager is unreliable. In particular, some
System V derivative UNIX systems often have problems with the network lock manager. If the output is
scrambled or rpict aborts with some ambient file related problem, you should just remove the ambient file
and go back to normal rendering.

AUTHOR
Greg Ward

SEE ALSO
getinfo(1), pfilt(1), ra_rgbe(1), rpict(1), ximage(1)

RADIANCE 10/1/98 2

RTRACE(1) RTRACE(1)

NAME
rtrace - trace rays in RADIANCE scene

SYNOPSIS
rtrace [options] [$EVAR] [@file] octree
rtrace [options] —defaults

DESCRIPTION
Rtrace traces rays from the standard input through the RADIANCE scene given by octree and sends the
results to the standard output. (The octree may be given as the output of a command enclosed in quotes and
preceded by a ‘I’.) Input for each ray is:

xorg yorg zorg xdir ydir zdir

If the direction vector is (0,0,0), a bogus record is printed and the output is flushed if the -x value is unset or
zero. (See the notes on this option below.) This may be useful for programs that run rtrace as a separate
process. In the second form, the default values for the options (modified by those options present) are
printed with a brief explanation.

Options may be given on the command line and/or read from the environment and/or read from a file. A
command argument beginning with a dollar sign (’$’) is immediately replaced by the contents of the given
environment variable. A command argument beginning with an at sign (@) is immediately replaced by
the contents of the given file. Most options are followed by one or more arguments, which must be sepa-
rated from the option and each other by white space. The exceptions to this rule are the boolean options.
Normally, the appearance of a boolean option causes a feature to be "toggled", that is switched from off to
on or on to off depending on its previous state. Boolean options may also be set explicitly by following
them immediately with a ’+’ or ’-’, meaning on or off, respectively. Synonyms for ’+” are any of the char-
acters "yYtT1", and synonyms for ’-’ are any of the characters "nNfF0". All other characters will generate

an error.

-fio
Format input according to the character i and output according to the character o. Rtrace
understands the following input and output formats: ’a’ for ascii, ’f’ for single-precision float-
ing point, and ’d’ for double-precision floating point. In addition to these three choices, the
character "¢’ may be used to denote 4-byte floating point (Radiance) color format for the output
of values only (—ov option, below). If the output character is missing, the input format is used.
Note that there is no space between this option and its argument.

-0spec
Produce output fields according to spec. Characters are interpreted as follows:
0 origin (input)
d direction (normalized)
% value (radiance)
w weight

effective length of ray

L first intersection distance

p point of intersection

n normal at intersection (perturbed)

N normal at intersection (unperturbed)
S surface name

m modifier name

RADIANCE 10/17/97 1

RTRACE(1)

-te mat

-ti mat

-tE file

-tl file

-X res

-y res

-dj frac

-ds frac

-dt frac

—dc frac

RADIANCE

RTRACE(1)

If the letter ’t” appears in spec, then the fields following will be printed for every ray traced, not
just the final result. Spawned rays are indented one tab for each level.

Note that there is no space between this option and its argument.

Append mat to the trace exclude list, so that it will not be reported by the trace option (—0*t*).
Any ray striking an object having mat as its modifier will not be reported to the standard output
with the rest of the rays being traced. This option has no effect unless the *t” option has been
given as part of the output specifier. Any number of excluded materials may be given, but each
must appear in a separate option.

Add mat to the trace include list, so that it will be considered during the indirect calculation.
The program can use either an include list or an exclude list, but not both.

Same as —te, except read materials to be excluded from file. The RAYPATH environment vari-
able determines which directories are searched for this file. The material names are separated
by white space in the file.

Same as —ti, except read materials to be included from file.

Boolean switch to compute irradiance rather than radiance values. This only affects the final
result, substituting a Lambertian surface and multiplying the radiance by pi. Glass and other
transparent surfaces are ignored during this stage. Light sources still appear with their original
radiance values, though the —dv option (below) may be used to override this. This option is
especially useful in conjunction with ximage(1) for computing illuminance at scene points.

Boolean switch to compute irradiance rather than radiance, with the input origin and direction
interpreted instead as measurement point and orientation.

Boolean switch for information header on output.

Set the x resolution to res. The output will be flushed after every res input rays. A value of
zero means that no output flushing will take place.

Set the y resolution to res. The program will exit after res scanlines have been processed,
where a scanline is the number of rays given by the —x option, or 1 if —x is zero. A value of
zero means the program will not halt until the end of file is reached.

If both —x and —y options are given, a resolution string is printed at the beginning of the out-
put. This is mostly useful for recovering image dimensions with pvalue(1), and for creating
valid Radiance picture files using the color output format. (See the —f option, above.)

Set the direct jittering to frac. A value of zero samples each source at specific sample points
(see the —ds option below), giving a smoother but somewhat less accurate rendering. A posi-
tive value causes rays to be distributed over each source sample according to its size, resulting
in more accurate penumbras. This option should never be greater than 1, and may even cause
problems (such as speckle) when the value is smaller. A warning about aiming failure will
issued if frac is too large.

Set the direct sampling ratio to frac. A light source will be subdivided until the width of each
sample area divided by the distance to the illuminated point is below this ratio. This assures
accuracy in regions close to large area sources at a slight computational expense. A value of
zero turns source subdivision off, sending at most one shadow ray to each light source.

Set the direct threshold to frac. Shadow testing will stop when the potential contribution of at
least the next and at most all remaining light sources is less than this fraction of the accumu-
lated value. (See the —dc option below.) The remaining light source contributions are approxi-
mated statistically. A value of zero means that all light sources will be tested for shadow.

Set the direct certainty to frac. A value of one guarantees that the absolute accuracy of the
direct calculation will be equal to or better than that given in the —dt specification. A value of
zero only insures that all shadow lines resulting in a contrast change greater than the —dt speci-
fication will be calculated.

10/17/97 2

RTRACE(1)

-dr N

-dp D

-sj frac

-st frac

-bv

RTRACE(1)

Set the number of relays for secondary sources to N. A value of 0 means that secondary
sources will be ignored. A value of 1 means that sources will be made into first generation sec-
ondary sources; a value of 2 means that first generation secondary sources will also be made
into second generation secondary sources, and so on.

Set the secondary source presampling density to D. This is the number of samples per stera-
dian that will be used to determine ahead of time whether or not it is worth following shadow
rays through all the reflections and/or transmissions associated with a secondary source path.
A value of 0 means that the full secondary source path will always be tested for shadows if it is
tested at all.

Boolean switch for light source visibility. With this switch off, sources will be black when
viewed directly although they will still participate in the direct calculation. This option is
mostly for the program mkillum(1) to avoid inappropriate counting of light sources, but it may
also be desirable in conjunction with the —i option.

Set the specular sampling jitter to frac. This is the degree to which the highlights are sampled
for rough specular materials. A value of one means that all highlights will be fully sampled
using distributed ray tracing. A value of zero means that no jittering will take place, and all
reflections will appear sharp even when they should be diffuse.

Set the specular sampling threshold to frac. This is the minimum fraction of reflection or
transmission, under which no specular sampling is performed. A value of zero means that
highlights will always be sampled by tracing reflected or transmitted rays. A value of one
means that specular sampling is never used. Highlights from light sources will always be cor-
rect, but reflections from other surfaces will be approximated using an ambient value. A sam-
pling threshold between zero and one offers a compromise between image accuracy and ren-
dering time.

Boolean switch for back face visibility. With this switch off, back faces of opaque objects will
be invisible to all rays. This is dangerous unless the model was constructed such that all sur-
face normals on opaque objects face outward. Although turning off back face visibility does
not save much computation time under most circumstances, it may be useful as a tool for scene
debugging, or for seeing through one-sided walls from the outside. This option has no effect
on transparent or translucent materials.

-av red grn blu

-aw N

-ab N

-ar res

-aa acc

RADIANCE

Set the ambient value to a radiance of red grn blu . This is the final value used in place of an
indirect light calculation. If the number of ambient bounces is one or greater and the ambient
value weight is non-zero (see -aw and -ab below), this value may be modified by the computed
indirect values to improve overall accuracy.

Set the relative weight of the ambient value given with the -av option to N. As new indirect
irradiances are computed, they will modify the default ambient value in a moving average, with
the specified weight assigned to the initial value given on the command and all other weights
set to 1. If a value of O is given with this option, then the initial ambient value is never modi-
fied. This is the safest value for scenes with large differences in indirect contributions, such as
when both indoor and outdoor (daylight) areas are visible.

Set the number of ambient bounces to N. This is the maximum number of diffuse bounces
computed by the indirect calculation. A value of zero implies no indirect calculation.

Set the ambient resolution to res. This number will determine the maximum density of ambi-
ent values used in interpolation. Error will start to increase on surfaces spaced closer than the
scene size divided by the ambient resolution. The maximum ambient value density is the scene
size times the ambient accuracy (see the —aa option below) divided by the ambient resolution.
The scene size can be determined using getinfo(1) with the —d option on the input octree.

Set the ambient accuracy to acc. This value will approximately equal the error from indirect
illuminance interpolation. A value of zero implies no interpolation.

10/17/97 3

RTRACE(1)

-ad N

-as N

-af fname

-ae mat

-ai mat

-aE file

-al file

RTRACE(1)

Set the number of ambient divisions to N. The error in the Monte Carlo calculation of indirect
illuminance will be inversely proportional to the square root of this number. A value of zero
implies no indirect calculation.

Set the number of ambient super-samples to N. Super-samples are applied only to the ambient
divisions which show a significant change.

Set the ambient file to fname. This is where indirect illuminance will be stored and retrieved.
Normally, indirect illuminance values are kept in memory and lost when the program finishes
or dies. By using a file, different invocations can share illuminance values, saving time in the
computation. The ambient file is in a machine-independent binary format which can be exam-
ined with lookamb(1).

The ambient file may also be used as a means of communication and data sharing between
simultaneously executing processes. The same file may be used by multiple processes, possi-
bly running on different machines and accessing the file via the network (ie. nfs(4)). The net-
work lock manager lockd(8) is used to insure that this information is used consistently.

If any calculation parameters are changed or the scene is modified, the old ambient file should
be removed so that the calculation can start over from scratch. For convenience, the original
ambient parameters are listed in the header of the ambient file. Getinfo(1) may be used to print
out this information.

Append mat to the ambient exclude list, so that it will not be considered during the indirect cal-
culation. This is a hack for speeding the indirect computation by ignoring certain objects. Any
object having mat as its modifier will get the default ambient level rather than a calculated
value. Any number of excluded materials may be given, but each must appear in a separate
option.

Add mat to the ambient include list, so that it will be considered during the indirect calculation.
The program can use either an include list or an exclude list, but not both.

Same as —ae, except read materials to be excluded from file. The RAYPATH environment
variable determines which directories are searched for this file. The material names are sepa-
rated by white space in the file.

Same as —ai, except read materials to be included from file.

-me rext gext bext

Set the global medium extinction coefficient to the indicated color, in units of 1/distance (dis-
tance in world coordinates). Light will be scattered or absorbed over distance according to this
value. The ratio of scattering to total scattering plus absorption is set by the albedo parameter,
described below.

-ma ralb galb balb

-mg gecc

Set the global medium albedo to the given value between 0 0 0 and 1 1 1. A zero value
means that all light not transmitted by the medium is absorbed. A unitary value means that all
light not transmitted by the medium is scattered in some new direction. The isotropy of scat-
tering is determined by the Heyney-Greenstein parameter, described below.

Set the medium Heyney-Greenstein eccentricity parameter to gecc. This parameter determines
how strongly scattering favors the forward direction. A value of 0 indicates perfectly isotropic
scattering. As this parameter approaches 1, scattering tends to prefer the forward direction.

—ms sampdist

-Ir N

-lw frac

RADIANCE

Set the medium sampling distance to sampdist, in world coordinate units. During source scat-
tering, this will be the average distance between adjacent samples. A value of 0 means that
only one sample will be taken per light source within a given scattering volume.

Limit reflections to a maximum of N.

Limit the weight of each ray to a minimum of frac. During ray-tracing, a record is kept of the
final contribution a ray would have to the image. If it is less then the specified minimum, the

10/17/97 4

RTRACE(1)

-e efile
-W
—P pfile

—-PP pfile

EXAMPLES
To compute

RTRACE(1)

ray is not traced.

Boolean switch to limit ray distance. If this option is set, then rays will only be traced as far as
the magnitude of each direction vector. Otherwise, vector magnitude is ignored and rays are
traced to infinity.

Send error messages and progress reports to efile instead of the standard error.
Boolean switch to suppress warning messages.

Execute in a persistent mode, using pfile as the control file. Persistent execution means that
after reaching end-of-file on its input, rtrace will fork a child process that will wait for another
rtrace command with the same —P option to attach to it. (Note that since the rest of the com-
mand line options will be those of the original invocation, it is not necessary to give any argu-
ments besides —P for subsequent calls.) Killing the process is achieved with the kill(1) com-
mand. (The process ID in the first line of pfile may be used to identify the waiting rtrace pro-
cess.) This option may be used with the —fr option of pinterp(1) to avoid the cost of starting
up rtrace many times.

Execute in continuous-forking persistent mode, using pfile as the control file. The difference
between this option and the —P option described above is the creation of multiple duplicate
processes to handle any number of attaches. This provides a simple and reliable mechanism of
memory sharing on most multiprocessing platforms, since the fork(2) system call will share
memory on a copy-on-write basis.

radiance values for the rays listed in samples.inp:

rtrace -ov scene.oct < samples.inp > radiance.out

To compute

illuminance values at locations selected with the ’t” command of ximage(1):

ximage scene.pic | rtrace -h -x 1 -i scene.oct | rcalc -e *$1=47.4*$1+120*$2+11.6*$3’

To record the object identifier corresponding to each pixel in an image:

vwrays -fd scene.pic | rtrace -fda ‘vwrays -d scene.pic‘ -0s scene.oct

To compute
cnt 640

an image with an unusual view mapping:

480 | rcalc -e ’xr:640;yr:480° -f unusual_view.cal | rtrace -x 640 -y 480 -fac scene.oct >

unusual.pic

ENVIRONMENT

RAYPATH the directories to check for auxiliary files.
FILES

Jusr/tmp/rEX XXX XX common header information for picture sequence
DIAGNOSTICS

If the program terminates from an input related error, the exit status will be 1. A system related error

results in an

exit status of 2. If the program receives a signal that is caught, it will exit with a status of 3. In

each case, an error message will be printed to the standard error, or to the file designated by the —e option.

AUTHOR
Greg Ward

SEE ALSO

getinfo(1), lookamb(1), oconv(1), pfilt(1), pinterp(1), pvalue(1), rpict(1), rview(1), vwrays(1), ximage(1)

RADIANCE

10/17/97 5

RVIEW(1) RVIEW(1)

NAME

rview - generate RADIANCE images interactively

SYNOPSIS

rview [rpict options][—o dev][—b][—pe exposure] [$EVAR] [@file] octree
rview [options] —defaults
rview —devices

DESCRIPTION

Rview generates RADIANCE images using octree. (The octree may be given as the output of a command
enclosed in quotes and preceded by a “I’.) Options specify the viewing parameters as well as giving some
control over the calculation. Options may be given on the command line and/or read from the environment
and/or read from a file. A command argument beginning with a dollar sign (’$’) is immediately replaced
by the contents of the given environment variable. A command argument beginning with an at sign @) is
immediately replaced by the contents of the given file. The options are the same as for rpict(1), with a few
notable exceptions. The —r, —z, =S, —P, —PP and —t options are not supported, and —o specifies which out-
put device is being used instead of the output file. The —x, —y and —pa options are unnecessary, since
rview scales the display image to the specified output device. Additionally, the —b option improves the dis-
play on greyscale monitors, and —pe may be used to set an initial exposure value.

In the second form, the default values for the options are printed with a brief explanation. In the third form,
the list of supported output devices is displayed.

Rview starts rendering the image from the selected viewpoint and gradually improves the resolution of the
display until interrupted by keyboard input. Rview then issues a prompt (usually ’:”) and accepts a com-
mand line from the user. Rview may also stop its calculation and wait for command input if the resolution
of the display has reached the resolution of the graphics device. At this point, it will give the ’done:’
prompt and await further instructions. If rview runs out of memory due to lack of resources to store its
computed image, it will give the out of memory:” prompt. At this prompt, the user can save the image,
quit, or even restart a new image, although this is not generally recommended on virtual memory machines
for efficiency reasons.

Rview is not meant to be a rendering program, and we strongly recommend that rpict(1) be used instead for
that purpose. Since rpict(1) does not store its image in memory or update any display of its output, it is
much faster and less wasteful of its resources than rview. Rview is intended as a quick interactive program
for deciding viewpoints and debugging scene descriptions and is not suited for producing polished images.

COMMANDS

Once the program starts, a number of commands can be used to control it. A command is given by its
name, which can be abbreviated, followed by its arguments.

aim[mag[xyz]]
Zoom in by mag on point x y z . The view point is held constant; only the view direction and
size are changed. If x y z is missing, the cursor is used to select the view center. A negative
magnification factor means zoom out. The default factor is one.

“C Interrupt. Go to the command line.

exposure [spec]

Adjust exposure. The number spec is a multiplier used to compensate the average exposure. A
value of 1 renormalizes the image to the computed average, which is usually done immediately
after startup. If spec begins with a ’+” or ’-’, the compensation is interpreted in f-stops (ie. the
power of two). If spec begins with an ’=’, an absolute setting is performed. An ’=’ by itself
permits interactive display and setting of the exposure. If spec begins with an *@’, the expo-
sure is adjusted to present similar visibility to what would be experienced in the real environ-
ment. If spec is absent, or an ’@’ is followed by nothing, then the cursor is used to pick a spe-
cific image location for normalization.

RADIANCE 2/14/96 1

RVIEW(1) RVIEW(1)

frame [xmin ymin xmax ymax]
Set frame for refinement. If coordinates are absent, the cursor is used to pick frame bound-
aries. If “all” is specified, the frame is reset to the entire image.

free Free cached object structures and associated data. This command may be useful when memory
is low and a completely different view is being generated from the one previous.

last [file] Restore the previous view. If a view or picture file is specified, the parameters are taken from
the last view entry in the file.

L[vw][rfile]]
Load parameters for view vw from the rad(1) input file, rfile. Both vw and rfile must be given
the first call, but subsequent calls will use the last rfile as a default, and "1" as the default view
(ie. the first view appearing in rfile). If rview was started by rad, then the rfile parameter will
initially default to the rad input file used.

move [mag[xyz]]
Move camera mag times closer to point x y z . For a perspective projection (or fisheye view),
only the view point is changed; the view direction and size remain constant. The view size
must be modified in a parallel projection since it determines magnification. If x y z is missing,
the cursor is used to select the view center. A negative magnification factor decreases the
object size. The default factor is one. Care must be taken to avoid moving behind or inside
other objects.

new Restart the image. Usually used after the "set" command.

pivotangle [elev[mag [xyz]]]
Similar to the "move" command, but pivots the view about a selected point. The angle is mea-
sured in degrees around the view up vector using the right hand rule. The optional elev is the
elevation in degrees from the pivot point; positive raises the view point to look downward and
negative lowers the view point to look upward.

quit Quit the program.

"R Redraw the image. Use when the display gets corrupted. On some displays, occassionally
forcing a redraw can improve appearance, as more color information is available and the driver
can make a better color table selection.

rotate angle [elev [mag]]
Rotate the camera horizontally by angle degrees. If an elevation is specified, the camera looks
upward elev degrees. (Negative means look downward.)

set[var[val]]

Check/change program variable. If var is absent, the list of available variables is displayed. If
val is absent, the current value of the variable is displayed and changed interactively. Other-
wise, the variable var assumes the value val. Variables include: ambient value (av), ambient
value weight (aw), ambient bounces (ab), ambient accuracy (aa), ambient divisions (ad), ambi-
ent radius (ar), ambient samples (as), black&white (b), direct jitter (dj), direct sampling (ds),
direct threshold (dt), direct visibility (dv), irradiance (i), limit weight (Iw), limit recursion (Ir),
medium extinction (me), medium albedo (ma), medium eccentricity (mg), medium sampling
(ms), pixel sample (ps), pixel threshold (pt), back face visibility (bv), specular jitter (sj), and
specular threshold (st). Once a variable has been changed, the "new" command can be used to
recompute the image with the new parameters. If a program variable is not available here, it
may show up under some other command or it may be impossible to change once the program
is running.

trace [xbeg ybeg zbeg xdir ydir zdir]
Trace a ray. If the ray origin and direction are absent, the cursor is used to pick a location in
the image to trace. The object intersected and its material, location and value are displayed.

RADIANCE 2/14/96 2

RVIEW(1) RVIEW(1)

view [file [comments]]
Check/change view parameters. If file is present, the view parameters are appended to a file,
followed by comments if any. Alternatively, view options may be given directly on the com-
mand line instead of an output view file. Otherwise, view parameters are displayed and
changed interactively.

V[vw[rfile]]
Append the current view as view vw in the rad file rfile. Compliment to L command. Note that

the view is simply appended to the file, and previous views with the same name should be
removed before using the file with rad.

write [file]
Write picture to file. If argument is missing, the current file name is used.

Z Stop the program. The screen will be redrawn when the program resumes.
ENVIRONMENT

RAYPATH the directories to check for auxiliary files. DIS-

PLAY_GAMMA the value to use for monitor gamma correction.
AUTHOR

Greg Ward
SEE ALSO

getinfo(1), lookamb(1), oconv(1), pfilt(1), rad(1), rpict(1), rtrace(1)

RADIANCE 2/14/96 3

T4014(1) T4014(1)

NAME
t4014 - output metafile to Tektronix t4014 graphics terminal

SYNOPSIS
t4014 [—c | —r] file ..

DESCRIPTION
t4014 reads each metafile file in sequence and converts it to output suitable for the Tektronix t4014 and
4016 graphics terminals. If the option c is specified, the input files are only conditioned for output, ie.
expanded and sorted (see pexpand and psort). This is useful if many copies of the same output is desired.
If the option r is instead specified, the input is assumed already to be conditioned. If no input files are spec-
ified, the standard input is read.

-C Condition the input only.
-r Input is already conditioned, output only.
EXAMPLE

To display the plot example.plt:
bgraph example.plt | t4014
FILES
see pexpand(1)
AUTHOR
Greg Ward

BUGS
Avrea fill is noticably lacking. Line textures fail on most 4014 emulators.

SEE ALSO
bgraph(1), cv(1), igraph(1), pexpand(1)

RADIANCE 6/24/98 1

TABFUNC(1) TABFUNC(1)

NAME
tabfunc - convert table to functions for rcalc, etc.

SYNOPSIS
tabfunc [—i] funcl [func2 ..]

DESCRIPTION

Tabfunc reads a table of numbers from the standard input and converts it to an expression suitable for
calc(1), rcalc(1) and their cousins. The input must consist of a M x N matrix of real numbers, with exactly
one row per line. The number of columns must always be the same in each line, separated by whitespace
and/or commas, with no missing values. The first column is always the independent variable, whose value
indexes all of the other elements. This value does not need to be evenly spaced, but it must be either mono-
tonically increasing or monotonically decreasing. (l.e. it cannot go up and then down, or down and then
up.) Maximum input line width is 4096 characters and the maximum number of data rows is 1024. Input
lines not beginning with a numerical value will be silently ignored.

The command-line arguments given to tabfunc are the names to be assigned to each column. Tabfunc then
produces a single function for each column given. If there are some columns which should be skipped, the
dummy name "0" may be given instead of a valid identifier. (It is not necessary to specify a dummy name
for extra columns at the end of the matrix.)

The —i option causes tabfunc to produce a description that will interpolate values in between those given
for the independent variable on the input.

EXAMPLE
To convert a small data table and feed it to rcalc for some calculation:

rcalc -e ‘tabfunc f1 f2 < table.dat* -f com.cal

AUTHOR
Greg Ward

SEE ALSO
cnt(1), lam(1), neat(1), rcalc(1), total(1)

RADIANCE 10/8/97 1

THF2RAD(1) THF2RAD(1)

NAME
thf2rad - convert GDS things file to RADIANCE description

SYNOPSIS
thf2rad [-nname][-rrad] [input ..]

DESCRIPTION
Thf2rad converts one or more GDS things files to a RADIANCE scene description. The material names for
the surfaces will be those assigned in GDS. The —n option may be used to give a name prefix to all the sur-
faces. The —r option may be used to specify a radius for line segments. By default, this value is zero,
which means that lines will be ignored. By setting it to some positive value, cylinders of the given radius
will represent lines.

EXAMPLE
To translate two things files into one RADIANCE file with the prefix "gds":

thf2rad -n gds buildingXl.thf building2.thf > building1+2.rad
To create an octree directly from a things file, giving lines a radius of .1:
oconv source.rad materials.rad "\!thf2rad -r .1 building1.thf” > buildingl.oct

AUTHOR
Greg Ward and Charles Ehrlich

SEE ALSO
arch2rad(1), ies2rad(1), oconv(1), xform(1)

RADIANCE 11/15/93 1

TMESH2RAD(1) TMESH2RAD(1)

NAME
tmesh2rad - convert a triangular mesh to a RADIANCE scene description

SYNOPSIS
tmesh2rad [—o obj][-m mat][-p pat] [input ..]

DESCRIPTION
Tmesh2rad converts one or more triangle-mesh files to a RADIANCE scene description. The —o option
may be used to assign a default object name. The single letter "T" is used if no name is given on the com-
mand line or in the file. The —m option may be used to assign a default material name. The non-material
"void" is used as a default if none is given on the command line or in the file. The —p option may be used
to assign a default picture for a surface pattern. If none is given on the command line or in the file, the sur-
face will not have an associated pattern.

FILE FORMAT
A triangle-mesh is a free-format ASCII file composed of the following eight primitive types. Each primi-
tive is begun with a single, white-space-delimited letter:

Comment
Whatever follows up until the end of line is passed as a comment to the output. Note that there
must be at least one space or tab following the pound-sign.

0 name The white-space-delimited string name is used as a prefix for all following output triangles.

m material The white-space-delimited string material is used as the modifier name for all following output
triangles.

p picture The white-space-delimited string picture is used as the name of the RADIANCE picture file to
be used as a pattern for all following output triangles with properly defined vertices. (See i
primitive below.)

vidxyz Defines the vertex id with 3-dimensional coordinates x, y and z. The identifier, id must be
some small, non-negative integer value. If the same integer is used for a later vertex definition,
this definition will be lost, though any triangles using the vertex prior to its redefinition will be
unaffected.

nnxnynz Defines a surface normal vector with the 3-dimensional components nx, ny and nz. This vector
will be associated with the most recently defined vertex, and is often placed on the same line as
the vertex definition for clarity. The vector need not be normalized.

iuv Defines a picture index for the most recently defined vertex. The u value will be used to
lookup the horizontal pixel coordinate in the currently defined picture. The v value will be
used to lookup the vertical pixel coordinate. (See the RADIANCE reference manual for details
on picture coordinate values.) As with associated surface normals, picture indices are interpo-
lated using barycentric coordinates based on the triangle vertices. If these coordinates are cal-
culated correctly, this should result in a smooth mapping of a pattern onto the surface mesh.

tidlid2 id3
Create a triangle connecting the three vertices identified by id1, id2 and id3. The right-hand
rule is used to determine the default surface normal orientation, and this should not be too far
from the associated vertex normals (if any). All three vertices must have an associated normal
if the triangle is to be smoothed. If a picture file is defined and all three vertices have pattern
indices associated with them, then this picture will be used as a pattern to modify the triangle’s
color.

We realize there are many similar T-mesh file formats in existence, and that it would have been just as easy
to support one of these formats directly. The disadvantage to supporting an existing format is that conver-
sion from other formats might prove difficult. It was our hope to provide a "greatest common multiple" for-
mat that would support all similar T-mesh formats, rather than supporting WaveFront’s .obj format (for
example) and being unable to associate a pattern with an object. Converting from other formats should be
relatively straightforward. In many cases, an awk(1), rcalc(1) or even a sed(1) script should be sufficient.

RADIANCE 3/18/96 1

TMESH2RAD(1)

EXAMPLE

Here is an example T-mesh file:

Our object name:

o test_object

Our material:

m puce

Our vertices:

v1 10 15 5

v?2 10 -15 5
v3 0 -15 0
v4 -10 15 -5

Two triangles joined together:
t123

t234

Which generates the following output:

T-mesh read from: <stdin>
Our material:

Our vertices:

Two triangles joined together:

puce polygon test_object.1

0
0
9
10 15 5
10 -15 5
0 -15 0

puce polygon test_object.2

0
0
9
10 -15 5
0 -15 0
-10 15 -5

Here is another example:

RADIANCE

A partial cylinder:

m BluePlastic

v1-14.673-3.119 50n-0.95677 -0.203374 1.17936e-10
v 2-12.136-8.817 -50n-0.791363 -0.574922 4.84915e-10
v 3-12.136-8.817 50 n-0.791363 -0.574922 4.84915e-10
t123

m OrangePlastic

v1-7.501-12.991 50 n-0.549094 -0.812427 -1.45812e-09
v2-12.136-8.817 50 n-0.791363 -0.574922 4.84915e-10
v 3-12.136-8.817 -50n-0.791363 -0.574922 4.84915e-10

3/18/96

TMESH2RAD(1)

TMESH2RAD(1) TMESH2RAD(1)

t123

m BluePlastic

v 1-1.568-14.918 50n-0.171094 -0.965568 -5.69788e-09
v 2-7.501-12.991 50 n-0.549094 -0.812427 -1.45812e-09
v 3-7.501-12.991 -50 n -0.429001 -0.881759 -3.6502¢-09
t123

Note that the same three vertices were used repeatedly, and intermingled with the triangle definitions.

AUTHOR
Greg Ward

BUGS
Triangle smoothing doesn’t work very well for glass or trans material types in Radiance, since textures
cause distorted transmission through these materials. It is best to use the dielectric material type if smooth
transmission is desired.

SEE ALSO
arch2rad(1), awk(1), ies2rad(1), thf2rad(1), oconv(1), rcalc(1), sed(1), xform(1)

RADIANCE 3/18/96 3

TOTAL() TOTAL()

NAME

total - sum up columns

SYNOPSIS

total [-m][-SE |-p|-u|-I][-tC][-N[-r]][file..]

DESCRIPTION

Total sums up columns of real numbers from one or more files and prints out the result on its standard out-
put.

By default, total computes the straigt sum of each input column, but multiplication can be specified instead
with the —p option. Likewise, the —u option means find the upper limit (maximum), and —I means find the
lower limit (minimum).

Sums of powers can be computed by giving an exponent with the —s option. (Note that there is no space
between the —s and the exponent.) This exponent can be any real number, positive or negative. The abso-
lute value of the input is always taken before the power is computed in order to avoid complex results.
Thus, —s1 will produce a sum of absolute values. The default power (zero) is interpreted as a straight sum
without taking absolute values.

The —m option can be used to compute the mean rather than the total. For sums, the arithmetic mean is
computed. For products, the geometric mean is computed. (A logarithmic sum of absolute values is used
to avoid overflow, and zero values are silently ignored.)

A count can be given as the number of lines to read before computing a result. By default, total reads each
file to its end before producing its result, but the —N option (where N is a decimal integer) tells total to pro-
duce a result and reset the calculation after every N input lines. In addition, the —r option can be specified
to override reinitialization and thus give a running total every N lines. If the end of file is reached, the cur-
rent total is printed and the calculation is reset before the next file (with or without the —r option).

The —tC option can be used to specify the input and output tab character. The default tab character is TAB.

If no files are given, the standard input is read.

EXAMPLE

BUGS

To compute the RMS value of colon-separated columns in a file:
total -t: -m -s2 input
To produce a running product of values from a file:

total -p -1 -r input

If the input files have varying numbers of columns, mean values will certainly be off. Total will ignore
missing column entries if the tab separator is a non-white character, but cannot tell where a missing column
should have been if the tab character is white.

AUTHOR

Greg Ward

SEE ALSO

cnt(1), lam(1), neat(1), rcalc(1), tabfunc(1)

RADIANCE 2/3/95 1

TRAD(1) TRAD(1)

NAME
trad - graphical user interface to Radiance rad(1) program

SYNOPSIS
trad [rfile]

DESCRIPTION
Trad is a graphical user interface to rad(1), which controls the operation of the basic Radiance scene com-
piling, rendering and picture filtering programs. Trad also includes links to a few utilities for displaying
and converting results, but most of what it does can be done by editing a small text file, called the "rad input
file". Scene creation still requires the use of a text or graphical editor, or translation from some external
CAD format.

Trad is based on the Tcl/Tk wish(1) "windowing shell" written by John Ousterhout. (See below for instruc-
tions on installing this package if you do not have it already.)

The trad interface divides the rendering problem into seven screens: File, Scene, Zone, Views, Options,
Action and Results. The File screen is used to load and save rad input files (a.k.a. project files). The Scene
screen is used to name the Radiance input files associated with a particular project. The Zone screen is
used to assign rad variables specific to the section of the model being rendered. The Views screen is used
to define specific views to be rendered and set the picture file names and dimensions. The Options screen is
used to adjust rendering quality and other parameters. The Action screen is used to initiate interactive and
batch renderings. The Results screen is used to display, convert and print the rendered Radiance pictures.

If trad is called with no rad input file name on the command line, it will start with the File screen and you
must enter a valid project file before you will be allowed to continue. If rfile is given, then trad attempts to
open this file. If no such file exists, trad assumes you are creating a new file by this name and goes to the
Scene screen so you may identify the appropriate Radiance input files. If the file exists but not all render-
ings have been finished, trad goes first to the Action screen, assuming you will want to do something. If
the file exists and all renderings have completed and are up-to-date, trad goes to the Results screen so that
you may examine the final pictures.

Trad includes an extensive help facility, which may be accessed either by pressing the "HELP" button and
searching through the category and topic menus, or by holding the Control key and pressing the left mouse
button on the mysterious widget (i.e. the button, entry window, or list box you are curious about).

INSTALLING TCL/TK
The Tcl/Tk package is available by anonymous ftp from ftp.smli.com (204.153.12.45) in the /pub/tcl direc-
tory. (Tcl stands for "Tool Command Language,” and is pronounced "tickle".) Trad is based on Tk release
4.0, which in turn is based on Tcl release 7.4. Although trad uses only the wish program from this package,
wish itself depends on additional Tcl and Tk libraries, and the two toolkits must be compiled one after the
other.

To compile the Tcl/Tk package, download the files "tcl7.4.tar.Z" and "tk4.0.tar.Z" and uncompress and
untar them. Then, follow the instructions in the README file in the tcl7.4/ directory to configure the
Makefile for your system and install the software. (Usually, it is best to do this as root or have it done by
your system administrator if you do not have root privileges.) Then, do the same in the tk4.0/ directory.

Trad should run without modification once this is done correctly.

AUTHOR
Greg Ward
wish and Tcl/Tk language by John Ousterhout

SEE ALSO
oconv(1), pfilt(1), rad(1), rpict(1), rview(1), wish(1), ximage(1)

RADIANCE 1/24/96 1

TTYIMAGE(1) TTYIMAGE(1)

NAME
ttyimage - RADIANCE driver for dumb ASCII terminal

SYNOPSIS
ttyimage [—c resolu][—r] [pixfile]

DESCRIPTION
Ttyimage takes the RADIANCE picture file pixfile and displays it on a dumb terminal. If no pixfile is given,
the standard input is read.

AUTHOR
Greg Ward

SEE ALSO
pfilt(1), rpict(1), ximage(1)

RADIANCE 10/9/97 1

VGAIMAGE(L) VGAIMAGE(1)

NAME
vgaimage - RADIANCE picture display program for VGA

SYNOPSIS
vgaimage [—c ncolors][-d][-b][-m][—g gamma][—e +/-stops] pixfile

DESCRIPTION
Vgaimage takes the RADIANCE picture file pixfile and displays it on a VGA or Super VGA card. The —c
option specifies the number of colors to use (default fills color table). The —d option turns off color dither-
ing. The —b option displays the image in black and white (greyscale). The —m option forces monochrome
output. The —g option specifies the exponent used in gamma correction; the default value is given by the
environment variable GAMMA, or 2.2 if GAMMA is undefined. The —e option specifies an exposure com-
pensation in f-stops (powers of two). Only integer stops are allowed, for efficiency.

If no pixfile is given, input is read from stdin provided either the —b or —m option is in effect.

COMMANDS
Once a picture is displayed, the user may perform a number of operations. Some of the operations make
use of an area of interest, defined by pressing a mouse button and dragging the cursor over a section of the
image. Pressing a button and immediately releasing it defines a single point as the area of interest. A com-
mand is a single character.

q Quit program.

<return> Display the radiance averaged over the area of interest.
| Display the luminance value in the area of interest.

c Display the color in the area of interest.

ENVIRONMENT
GAMMA the default gamma correction value

AUTHORS
Greg Ward

SEE ALSO
aedimage(1), pfilt(1), rpict(1), rtrace(1), ximage(1)

RADIANCE 11/15/93 1

VWRAYS(1) VWRAYS(1)

NAME
vwrays - compute rays for a given picture or view

SYNOPSIS
vwrays [-i -f{a|f|d} | -d] { view opts .. | picture [zbuf] }

DESCRIPTION
Vwrays takes a picture or view specification and computes the ray origin and direction corresponding to
each pixel in the image. This information may then be passed to rtrace(1) to perform other calculations. If
a given pixel has no corresponding ray (because it is outside the legal view boundaries), then six zero val-
ues are sent instead.

The -i option may be used to specify desired pixel positions on the standard input rather than generating all
the pixels for a given view.

The -f option may be used to set the record format to something other than the default ASCII. Using raw
float or double records for example can reduce the time requirements of transferring and interpreting infor-
mation in rtrace.

View options may be any combination of standard view parameters described in the rpict(1) manual page,
including input from a view file with the —vf option. Additionally, the target X and Y dimensions may be
specified with -x and -y options, and the pixel aspect ratio may be given with -p. The default dimensions
are 512x512, with a pixel aspect ratio of 1.0. Just as in rpict, the X or the Y dimension will be reduced if
necessary to best match the specified pixel aspect ratio, unless this ratio is set to zero.

If the -d option is given, then vwrays just prints the computed image dimensions, which are based on the
view aspect and the pixel aspect ratio just described. The -ld switch will also be printed, with -ld+ if the
view file has an aft clipping plane, and -1d- otherwise. This is useful for passing options to the rtrace com-
mand line. (See below.)

If the view contains an aft clipping plane (-va option), then the magnitudes of the ray directions will equal
the maximum distance for each pixel, which will be interpreted correctly by rtrace with the -l1d+ option.
Note that this option should not be given unless there is an aft clipping plane, since the ray direction vectors
will be normalized otherwise, which would produce a uniform clipping distance of 1.

If a picture is given on the command line rather than a set of view options, then the view and image dimen-
sions are taken from the picture file, and the reported ray origins and directions will exactly match the cen-
ter of each pixel in the picture.

If a depth buffer file is given as well, then vwrays computes the intersection point of each pixel ray (equal to
the ray origin plus the depth times the ray direction), and reports this instead of the ray origin. The reported
ray direction will also be reversed. The interpretation of this data is an image of origins and directions for
light rays leaving the scene surfaces to strike each pixel.

EXAMPLES
To compute the ray intersection points and returned directions corresponding to a picture and its depth
buffer:

VWrays scene_v2.pic scene_v2.zbf > scene_v2.pts

To determine what the dimensions of a given view would be:
vwrays -d -vf myview.vf -x 2048 -y 2048

To generate a RADIANCE picture using rtrace instead of rpict:

vwrays -ff -vf viewl.vf -x 1024 -y 1024 | rtrace ‘vwrays -d -vf view1.vf -x 1024 -y 1024* -ffc scene.oct
> viewl.pic
AUTHOR
Greg Ward Larson

ACKNOWLEDGMENT
This work was supported by Silicon Graphics, Inc.

RADIANCE 1/15/99 1

VWRAYS(1) VWRAYS(1)

BUGS
Although vwrays can reproduce any pixel ordering (i.e., any image orientation) when given a rendered pic-
ture, it will only produce standard scanline-ordered rays when given a set of view parameters.

SEE ALSO
rcalc(l), rpict(1), rtrace(1)

RADIANCE 1/15/99 2

VWRIGHT(1)

NAME
vwright - normalize a RADIANCE view, shift it to the right

SYNOPSIS
vwright distance
vwright name

DESCRIPTION

VWRIGHT(1)

Vwright shifts a RADIANCE view from a picture or view file given on the standard input the specified dis-
tance to the right, putting out a complete set of view parameters in a single line on the standard output.
This utility is most often used to compute a right-eyed view from a left-eye view for stereo imaging.

The distance given is in world coordinate units. A negative value indicates a shift to the left rather than the

right.

The second form substitutes a name prefix in place of the shift distance, and produces constant assignments
on the standard output suitable for passing directly to rcalc(1). For a given prefix N, the constant names are

as follows:

Nt: view type ('v’==11'==2a’==3h’==4,"¢c’==5)
Npx: view point x value

Npy: view pointy value

Npz: view point z value

Ndx: view direction x value (normalized)

Ndy: view direction y value (normalized)

Ndz: view direction z value (normalized)

Nux: view up vector x value (normalized)

Nuy: view up vector y value (normalized)

Nuz: view up vector z value (normalized)

Nh: view horizontal size

Nv: view vertical size

Ns: view shift

NI: view lift

No: view fore clipping distance
Na: view aft clipping distance

Nhx: derived horizontal image vector x value (normalized)
Nhy: derived horizontal image vector y value (normalized)
Nhz: derived horizontal image vector z value (normalized)
Nhn: derived horizontal image vector multiplier

Nvx: derived vertical image vector x value (normalized)
Nvy: derived vertical image vector y value (normalized)
Nvz: derived vertical image vector z value (hormalized)
Nvn: derived vertical image vector multiplier

EXAMPLES

To start rpict(1) on a view .06 meters left of the view in the file "right.vf":

rpict ‘vwright -.06 < right.vf* scene.oct > right.pic &

To move the rad(1) view named "left" 2.5 inches to the right and render from there:

rad -v "right ‘rad -n -s -V -v left examp.rif | vwright 2.5 examp.rif &

To pass a view to rcalc for conversion to some other view:

rcalc -n -e ‘vwright orig < orig.vf* -f viewmod.cal -o view.fmt > new.vf

AUTHOR
Greg Ward

RADIANCE 8/29/96

VWRIGHT(1) VWRIGHT(1)

SEE ALSO
pdfblur(1), rad(1), rcalc(1), rpict(1), rview(1)

RADIANCE 8/29/96 2

X11IMETA(1) X1IMETA(L)

NAME
x11meta - output metafile graphics to X11

SYNOPSIS
x11lmeta [—c | -r] file ..

DESCRIPTION
X11meta reads each metafile file in sequence and sends it to the default X window system. If the option c is
specified, the input files are only conditioned for output, ie. expanded and sorted (see pexpand and psort).
If the option r is instead specified, the input is assumed already to be conditioned. If no input files are spec-
ified, the standard input is read.

-C Condition the input only.
-r Input is already conditioned, output only.
EXAMPLE

To plot the chart example.bar:
bgraph example.plt | x11meta
FILES
see pexpand(1) and psort(1)
AUTHOR
Greg Ward

SEE ALSO
bgraph(1), cv(1), igraph(1), metafile(5), pexpand(1), psmeta(1), psort(1)

XFORM(1) XFORM(1)

NAME
xform - transform a RADIANCE scene description

SYNOPSIS
xform [—c][=1][-n name][-m newmod][—f argfile][xf0][—a n1 xf1 ..][-i 1 xff] file ..

DESCRIPTION
Xform transforms each scene description file according to the options given. If no file is specified, the stan-
dard input is read. The —c option causes commands in the input not to be expanded. The default is to
execute all in line commands. (See note below about file names.) The —n option causes all identifiers to
be prefixed with name. The —m option causes all surfaces to be given the modifier newmod. The —I option
causes all surfaces to be inverted, reversing their surface normal orientations. These options are followed
by the transformation options, which are described below.

The —f option causes the xform command line to be constructed from the given file, by inserting each line
of the file at the current point in the command argument list. Each line in the file will result in a logically
separate invocation of xform, and may may contain any valid xform arguments, including nested —f options.
This is a convenient way to specify multiple copies of an object that do not fit a regular array pattern, with-
out having to actually execute xform many times. Separate scene files may be specified this way as well,
but remember that the constructed command line must fit the format of initial options (-n, -m, -c, -1) fol-
lowed by the transform then the scene files. No initial options may appear after the first transform option,
and no transform options will be understood after the first named file. In the special case where the argu-
ment to the —f option is a hyphen (’-"), xform will take its arguments from the standard input. Note that
xform cannot simultaneously take its scene information from the standard input if the option is used in this
way. Competely empty lines and lines beginning with a pound sign ("#’) will be silently ignored. Begin-
ning "Ixform™ or "xform™ command names will also be ignored.

If one or more scene files are given on the command line, xform will search the RADIANCE library direc-
tories for each file. (No search takes place if a file name begins with a *.”, ’/> or ™ character.) Unless the

—c option is present, xform will also change to that file’s directory before loading it. Thus, any commands
executed within that file will happen in that file’s directory, which simplifies object hierarchy construction.

The transformation consists of a sequence of operations which are executed in the order they appear.

OPTIONS
-txyz Translate the scene along the vector xy z .

-rx degrees
Rotate the scene degrees about the x axis. A positive rotation corresponds to counter-clock-
wise when looking down the axis.

-ry degrees
Rotate the scene degrees about the y axis.

-rz degrees
Rotate the scene degrees about the z axis.

-s factor ~ Scale the scene by factor.

-mx Mirror the scene about the yz plane.
-my Mirror the scene about the xz plane.
-mz Mirror the scene about the xy plane.
-i count Iterate (repeat) the following transformation (up to the next —i option) count times. This

option is primarily to support the —a option, which is described below.

Arrays
An array is a repeated transformation that results in a repeated object. It is specified using the —a option,
which takes the number to repeat as its argument. The objects will step by the transformation given
between this —a option and the next —a or —i option. The first object will have zero applications of the
transform. A two-dimensional array is given by two different transformations each preceded by an array

RADIANCE 6/4/99 1

XFORM(1) XFORM(1)

count.

EXAMPLE
To rotate “book’ 30 degrees about the x axis then move 20 in y, prepending the name book?:

xform -n book1 -rx 30 -t 0 20 0 book > book1
To expand all commands and see what information is actually used by RADIANCE:
xform scene | more

To create a two-dimensional array of 20 lights, after an initial rotation and followed by a global translation
(no command expansion):

xform-c-rz90-a5-t200-a4-t01.50-i1-t00 10 light
ENVIRONMENT

RAYPATH path to search for scene files
AUTHOR

Greg Ward
BUGS

Only regular (distortion-free) transformations are allowed.
SEE ALSO

genbox(1), gensurf(1), oconv(1), replmarks(1), rpict(1), rview(1)

RADIANCE 6/4/99 2

XGLARESRC(1) XGLARESRC(1)

NAME
xglaresrc - dislpay glare sources under X11

SYNOPSIS
xglaresrc [—n windowname][—c r g b] pictfile [glarefile]

DESCRIPTION

Xglaresrc displays the sources located by findglare(1) in the picture pictfile by displaying their average
luminance and drawing circles around them in the image. If pictfile is already being displayed by xim-
age(1), xglaresrc will raise (or deiconify) this window. If pictfile is not being displayed, xglaresrc will start
ximage(1) in the background automatically. (To quit from ximage(1), you can type ’q’ in its display win-
dow.) Usually, pictfile will be the image that was used by findglare(1) to locate glare sources.

If the desired image is being displayed under a different name, perhaps even by a different display program
than ximage(1), the —n option can be used to give an alternative windowname for locating the correct dis-

play window, and the —c option can be used to specify a different line and text color (default 1 0 0). If the
inpute glarefile is not given, xglaresrc reads from its standard input.

AUTHOR
Greg Ward

ACKNOWLEDGEMENT
Work on this program was initiated and sponsored by the LESO group at EPFL in Switzerland.

SEE ALSO
findglare(1), glare(1), glarendx(1), ximage(1)

RADIANCE 11/15/93 1

XIMAGE(1) XIMAGE(1)

NAME
ximage - RADIANCE driver for X window system

SYNOPSIS
ximage
[
=geometry
Il
—di
display
Il
-C
ncolors

IL
—d

Il

-b

Il

-m

Il

-9
gamma
Il

-f

Il

-e

spec

Il
-0spec
1[-tintvl][-s] picture ..

DESCRIPTION

Ximage takes one or more RADIANCE picture files and displays them on an X server. The —c option spec-
ifies the number of colors to use (default fills color table). The —d option turns off color dithering. The —b
option displays the image in black and white (greyscale). The —m option forces monochrome output. The
—g option specifies the exponent used in gamma correction; the default value is 2.2. The —f option stores a
Pixmap on the server side for faster refresh. This may not work with large images on some servers. The
—0 option specifies a sequence of information to print to the standard output for the 't” command (see
below). The —t option specifies a minimum interval (in milliseconds) between successive ray outputs in
mouse tracking mode (right button pressed).

The —e option specifies an exposure compensation in f-stops (powers of two). Only integer stops are
allowed, for efficiency. If the special word, auto is given instead of a number of stops, then ximage per-
forms an automatic exposure adjustment similar to pcond(1), compressing the dynamic range of the image
to fit within the dynamic range of the display. If the special word, human is given instead, then ximage per-
forms an exposure adjustment similar to pcond with the —s and —c options, which compensate for human
contrast and color sensitivity at the corresponding scene luminance levels. This option yeilds and appear-
ance of the scene on the display that closely matches what would be experienced in the real world.

The —s option tells ximage to display multiple pictures sequentially, rather than all at once. If no picture is
given, input is read from stdin provided either the —b or —m option is in effect, or the X server is capable of
24-bit color. However, many of the commands given below will not work.

COMMANDS
Once a picture is displayed, the user may perform a number of operations. Some of the operations make
use of an area of interest, defined by pressing the left mouse button and dragging the cursor over a section
of the image. Pressing the button and immediately releasing it defines a single point as the area of interest.

RADIANCE 10/27/98 1

XIMAGE(1)

XIMAGE(1)

A command is a single character.

q
<space>

R
<return>
|

RADIANCE

Quit picture. (Also Q or"D.)

Redraw the area of interest.

Redraw the entire image.

Display the radiance averaged over the area of interest.

Display the luminance value in the area of interest. This assumes that the image was correctly
computed in terms of luminance.

Display the color in the area of interest.
Display the x and y location of the cursor.

Identify identical pixels by assigning a random color at the cursor position. This is useful for
displaying contours, especially when combined with the -b option.

Print information about the pixel under the cursor according to the string following the —o
command line option. The valid characters for this option correspond roughly to the other xim-
age commands:

0 ray origin
d ray direction
% radiance value

| luminance value
p pixel position

The default output is "-ood", which prints the ray origin and direction. This can be used as
input to rtrace(1) to get additional information about the image (ie. pipe the output of ximage
into rtrace). Pressing the middle mouse button is equivalent to typing the ’t” key. Pressing and
holding the right mouse button is equivalent to continuously pressing the ’t’ key.

Adjust the exposure to the area of interest. A crude adjustment is made immediately, and the
number of stops is printed while the colors are resampled. After a few seconds to a minute, the
final image is redisplayed. If the area of interest is already within 1/2 stop of the ideal, no
adjustment is made.

Same as ’=’ command, only the exposure is adjusted to provide roughly the same visibility for
the selected region on screen as a viewer would experience in the actual space. Like the I’
command, this adjustment assumes that the image has been correctly computed in terms of
luminance. (See also the ’h’ command, below.)

Perform automatic exposure compensation, as if ximage were started with the —e auto option.
If a rectangular area has been selected, the pixels in this region will be emphasized in the his-
togram, offering this area exposure preference. (Each pixel within the rectangle will be
weighted as 21 outside pixels.)

Perform human expsoure compensation, as if ximage were started with the —e human option.
See the a’ command above regarding pixel weighting.

Reset the origin to the upper left corner of the image. This command is used to restore the
original image position after using the shift or control key with the mouse to relocate the image
within the frame (see below).

Switch on the fast redraw option (—f), loading the image pixmap over to the server side. This
command is useful when network delays are causing slow image refresh, and the user didn’t
notice it until after ximage was started.

Switch off the fast redraw option. This frees up some memory on the server, as well as the
color table for other windows.

10/27/98 2

XIMAGE(1) XIMAGE(1)

In addition to the commands listed above, the control or shift key may be held while the cursor is dragged
to reposition the image within the window.

X RESOURCES
radiance.gamma the default gamma correction value

ENVIRONMENT
DISPLAY_GAMMA the default gamma correction value

AUTHORS
Greg Ward
Anat Grynberg (Paris)
Philip Thompson (MIT)
SEE ALSO
aedimage(1), normtiff(1), pcond(1), pfilt(1), rpict(1), rtrace(1), rview(1), xglaresrc(1), xshowtrace(1)

RADIANCE 10/27/98 3

XSHOWTRACE(1) XSHOWTRACE(1)

NAME
xshowtrace - interactively show rays traced on RADIANCE image under X11

SYNOPSIS
xshowtrace [—s][rtrace options] octree picture

DESCRIPTION
Xshowtrace takes a RADIANCE octree and a picture file and displays it on an X11 window server using
ximage(1). The picture should have been created from a previous rpict(1) or rview(1) calculation using the
given octree. Once the image is displayed, the user can use the ’t” command of ximage to select points on
the image to display the ray tree. Rtrace then produces a ray tree, which xshowtrace will display (in red on
a color screen). The —s option slows the display of each ray traced to make it easier to follow the process.

AUTHOR
Greg Ward

BUGS
If the pointer is moved between the time ’t’ is pressed and xshowtrace starts drawing rays, the rays will be
displaced.

SEE ALSO
oconv(1), rpict(1), rtrace(1), rview(1), ximage(1)

RADIANCE 11/15/93 1

META(3) META(3)

NAME
libmeta.a - simplified interface to metafile(5)

SYNOPSIS
extern FILE *pout;

mline(X, y, type, thick, color)
mpoly(X, y, border, pat, color)
mdraw(X, y)

mtext(x, v, s, cpi, color)
char *s;

mvstr(xmin, ymin, xmax, ymax, s, d, thick, color)
char *s;

mrectangle(xmin, ymin, xmax, ymax, pat, color)
mtriangle(xmin, ymin, xmax, ymax, d, pat, color)

msegment(xmin, ymin, xmax, ymax, sname, d, thick, color)
char *sname;

msetpat(pat, pattern)
char *pattern;

mopenseg(sname)
char *sname;

mcloseseg()

minclude(fname)
char *fname;

mendpage()
mdone()

DESCRIPTION
The routines in libmeta provide a simple interface to the metafile(5) 2D graphics stream. Output from these
routines is sent to pout. Pout defaults to the standard output, and should be piped to the appropriate device
driver.

All coordinates range from 0 to 16383 and map to a square area on the output device. D values are one of
r’, ’u’, ’I” and ’d’ corresponding to right, up, left, and down respectively. Color values range from 0 to 3
and normally correspond to black, cyan, green and blue. Pattern values range from 0 to 3 and default to
solid, thick lines, thin lines, and candystripe. Pattern value mapping may be changed via setpat. All strings
are null-terminated, and do not contain newlines.

Mline starts a line at the given coordinates. The line type is a number from 0 to 3 corresponding to solid,
dashed, dotted, and dot-dashed. The line thickness, thick, is a number from 0 to 3. Connected lines are
drawn with successive calls to mdraw.

Mpoly starts a polygon at the given coordinates. The boolean border specifies whether or not a border is
desired around the polygon. Mdraw is used to add vertices to the polygon. The polygon will be closed
automatically after the last call.

Mtext prints a string of hardware characters starting at the given coordinates. The characters per inch are
cpi. Text is always oriented to the right.

Muvstr places a vector character string within the given boundaries. The string is oriented according to d.
The character line thickness is given by thick.

Mrectangle fills the given box with pat. Mtriangle fills the half-box with orientation d in the given bound-
aries. Right corresponds to a triangle in the lower right half of the box. Up corresponds to a triangle in the
upper right, left is upper left, and down is lower left.

Radiance 11/15/93 1

META(3) META(3)

Msegment places an instance of the segment sname within the given boundaries. The segment is oriented
according to d, where ’r’ is null rotation. If either thick or color is nonzero, its value will replace corre-
sponding values in the segment primitives. (For area filling, thick changes the fill pattern.)

Msetpat maps pat to pattern. Pattern is a string of the form "Pn" where n is a number between 0 and 11.

Mopenseg opens the segment named sname. All graphics calls up to a matching call to mcloseseg are
stored under sname. An instance of the segment is obtained with a call to msegment. Segments can be
nested to any level, and redefining segments is allowed. Beware of calls to mtext within a segment, since
text will not rotate or scale.

Minclude includes the graphics metafile fname in the output stream. Mendpage advances to the next screen
or page. On a terminal, the bell rings and a line is read to prevent premature erasure. Mdone completes
metafile output, and is the only required call.

DIAGNOSTICS
None.

SEE ALSO
t4014(1), mx80(1), impress(1), primout(3), metafile(5)

Radiance 11/15/93 2

METAFILE(5) METAFILE(5)

NAME
metafile - graphics command interface, similar to plot(5)

DESCRIPTION
The metafile graphics format was designed with the primary goal of serving as a temporary file for routines
which output to dot-matrix and other line-at-a-time devices. As a result, all of the "primitives" are com-
pletely self-contained to facilitate sorting.

A primitive is a command which can itself be plotted. Into this catagory fall line segments, rectangle and
triangle fills, matrix and vector strings. Every primitive has a zeroeth argument which contains bundled
attribute information, and an extent. The extent gives the x and y minimum and maximum values which
enclose the primitive. The extent is used in sorting, and typically also in describing the primitive. For
example, a line segment will be described completely by its enclosing rectangle and attributes including
specification of which diagonal the segment falls on. Other primitives will have additional arguments, such
as vector string, which must specify the string to be output within its extent.

"Global" commands separate the primitives and allow functions which affect all commands. These are
commands such as end of page, pause, open and close segment, set, unset and reset, and a special global,
end of file. The end of file command is included to facilitate finding the end of file on systems which do
not keep track exactly. Global commands sometimes have arguments. The open command, for instance,
specifies the name of the segment. Global commands never have extents.

The metafile commands are as follows:

F end of file: no arguments.
When end of file is reached, all processing stops.

E end of page: no arguments.
This causes the device to advance to the next screen or page. If the output device is a terminal, it will
beep and wait for the user to hit return before clearing the screen.

P pause: arguments specify the message to be printed.
This causes output to be flushed and the controlling terminal to be opened. The user is then prompted
with the specified string followed by the message "- (hit return to continue)". If no string is specified,
the bell is sounded without a message. After the user hits return, output continues. This command is
useful when the user is required for some part of the output, such as changing paper or pens.

D draw global: no arguments.
This global forces flushing of output and updating of device.

I include file: arg0 TRUE if standard file.
The include global causes the contents of the named file to be substituted in the include command’s
location. If arg0 is 1 (TRUE), a standard location is searched if the file is not found in the working
directory. If arg0 is O (FALSE), the file must be in the working directory. Include files can be nested to
the number of allowed open files.

S set: arg0 specifies what to set (from meta.h):
SALL: place context mark on current settings.
SPATO: set pattern 0 to the specified value.
SPAT1: set pattern 1 to the specified value.
SPAT2: set pattern 2 to the specified value.
SPAT3: set pattern 3 to the specified value.
The set command is used to globally affect certain attributes. The zeroeth argument specifies the vari-
able to set, and the arguments following specify the value. Pattern values can have two forms. The first
form begins with the letter ’P’, immediately followed by an integer between 0 and 11. This selects one
from the following patterns: solid, thick \\\, thin \\\; mixed \\\, thick ///, thin ///, mixed ///, crisscross,
web. The default pattern settings are: 0=P0, 1=P1, 2=P2, 3=P3. The second form gives the explicit
values for a pattern. The set all command makes a context mark with the current settings. All settings
which follow can be undone with the unset all command.

RADIANCE 10/23/98 1

METAFILE(5) METAFILE(5)

U unset: arg0 specifies what to unset (from meta.h):
SALL: return to previous context.
SPATO: set pattern 0 to the previous value.
SPAT1: set pattern 1 to the previous value.
SPAT2: set pattern 2 to the previous value.
SPAT3: set pattern 3 to the previous value.
The unset command returns a variable to its previous value. The unset all command returns the settings
to the values they had in the previous context. If no context has been marked by set all, variables are
returned to their default values.

R reset: arg0 specifies what to reset (from meta.h):
SALL: reset all variables.
SPATO: set pattern 0O to the default value.
SPAT1: set pattern 1 to the default value.
SPAT2: set pattern 2 to the default value.
SPAT3: set pattern 3 to the default value.
The reset command returns a variable to its default setting. The reset all command returns all variables
to their initial state.

O open segment: arguments specify segment name.
The commands following up to a C (close segment) are not to be output, but are to be stored in the
named segment. Segment names can contain any ascii character (except newline) in any sequence of
reasonable length. Segment definitions are local to the enclosing segment. Side effects should be
avoided in segments by balancing calls to set and unset. A segment cannot reference itself.

C close segment: no arguments.
The current segment is closed, which completes its usable definition.

I line segment: fields of arg0 are:
100: orientation: positive slope, negative slope.
060: type: solid, dashed, dotted, dotted-dashed.
014: width: 0, 12, 24, 48, 96 units.
003: color: black, red, green, blue.

r rectangle fill: fields of arg0 are:
100: toggle: OR fill, XOR fill.
014: pattern: choice of 4 (see set).
003: color: black, red, green, blue.
Fills the given extent with the specified pattern. Toggle (XOR) fill allows the reversal of previous fills
to an area.

t triangle fill: fields of arg0 are:
100: toggle: OR fill, XOR fill.
060: orientation: right (& down), up, left, down.
014: pattern: choice of 4 (see set).
003: color: black, red, green, blue.
Fills the given half-rectangle with the specified pattern. A triangle is oriented to the right if the the area
between the positive-sloped diagonal and the lower right corner of the extent is filled. Rotating this tri-
angle ccw successively yields up, left and down triangles. Toggle (XOR) fill allows the reversal of pre-
vious fills to an area.

p polygon fill: fields of arg0 are:
100: border: no border, line border.
060: orientation: right (& down), up, left, down.
014: pattern: choice of 4 (see set).
003: color: black, red, green, blue.
The argument string gives a blank separated list of the polygon vertices in the form: "x0 y0 x1 y1 x2 y2
... "". The coordinates must be integers ranging between 0 and 16383. The bounding box and orienta-
tion will be used to fit the original polygon into a scaled and rotated position. The last vertex will be

RADIANCE 10/23/98 2

METAFILE(5) METAFILE(5)

connected to the first, and the polygon will be filled in with the specified pattern. If a border is
requested, one will be drawn of solid black zero width lines. All polygon fills will toggle, therefore
other polygon and toggled triangle and rectangle fills will affect the final appearance of the image. For
example, a polygon drawn inside another polygon of the same pattern will make a hole.

m matrix string: fields of arg0 are:
100: strike: single, double.
060: density: 10 cpi, 12 cpi, 17 cpi, 20 cpi.
014: size: normal, double width, double height, double both.
003: color: black, red, green, blue.
The upper left corner of the extent is used to place the beginning of the string specified after the com-
mand. More sophisticated drivers will use the extent for clipping, but the size of the characters will not
be altered.

v vector string: fields of arg0 are:
060: orientation: right, up, left, down.
014: thickness: 0, 12, 24, 48, 96 units.
003: color: black, red, green, blue.
The string specified following the command will be made to fit within the given extent.

s print segment: fields of arg0 are:
060: orientation: right, up, left, down.
014: thickness: 0, 12, 24, 48, 96 units.
003: color: black, red, green, blue.
The segment whose name is specified in the arguments will be oriented according to arg0 and made to
fit in the given extent. The thickness and color of the lines in the segment will be changed also accord-
ing to arg0. In the case of area fill, it is the pattern rather than the width which will change. The seg-
ment must have been previously defined using the open segment global. Note that matrix strings will
not transfer well since they cannot be oriented or scaled.

The metafile has two basic formats. The first format is meant to be user readable, and has the form:
¢ arg0 xmin ymin xmax ymax ‘args

Where c is the single letter command, arg0 is the octal value for arg0, xmin ymin xmax ymax are the extent
(ranging from 0 to 16283), and the optional args following the backquote are additional arguments, termi-
nated by a newline. If the command is a global, the extent is not present. If the global has no arg0, 0200 is
appropriate. Any global which has a following string must have a value for arg0 (< 0200). Comments are
permitted on lines beginning with a pound sign ("#’).

The second format is roughly equivalent, but packs the extrema into two bytes each. It takes between one
quarter and one third as much space, and much less processing to use this type of file, hence it is the default
format for all of the programs. Conversion between formats is accomplished with cv(1).

FILES
The standard location for metafiles used by the programs is /usr/lib/meta/, but can be changed by setting the
environment variable MDIR. This is useful for systems where the owner does not have access to the
fusr/lib/ directory. It also allows the user to create his own metafiles for vector characters and other sym-
bols.

BUGS
The command for line segment (’I’) is awkward at best.

AUTHOR
Greg Ward

SEE ALSO
cv(1), meta(3), pexpand(1), primout(3), psort(1)

RADIANCE 10/23/98 3

