
__
Radiance File Formats Greg Ward Larson 1

Radiance File Formats

This chapter discusses the standard file formats specific to Radiance, and
gives their internal structure, with pointers to routines for reading and writing
them. The following file formats (listed with their conventional suffixes) are
covered:

Scene Description (.rad suffix)
This is the main input file type, describing materials and
geometry for the rendering programs, and must be compiled into
an octree by oconv prior to ray-tracing. It is an ASCII text
format, and is often translated from a CAD description, but may
be created or edited by a text editor as well.

Function File (.cal suffix)
Also a text format, these files describe mathematical patterns,
textures, and surface shapes. In the case of patterns and
textures, the functions serve as input directly to the rendering
programs. In the case of surfaces, the functions serve as input to
one of the generator programs, gensurf, genrev or genworm.
Additionally, pcomb may be used to perform math on Radiance
pictures and the rcalc utility may be used in creative ways to
manipulate data for scene generation and data analysis.

Data File (.dat suffix)
Another ASCII format, data files are used directly by the
rendering programs to interpolate values for luminaire
photometry, among other things.

Font File (.fnt suffix)
A simple, polygonal font representation for rendering text
patterns. This ASCII format describes each character "glyph" as
a sequence of vertices in rectangular, integer coordinates ranging
from 0 to 255.

Octree (.oct suffix)
A binary data structure computed from one or more scene
description files by the oconv program. It may contain frozen
scene data in binary form, or merely references to the original
scene files.

__
Radiance File Formats Greg Ward Larson 2

Picture (.pic suffix)
A binary image file containing calibrated, real radiance values at
each pixel. Radiance pictures may be displayed, analyzed, and
converted to other image formats.

Z-buffer (.zbf suffix)
A binary file with the distances to each pixel in a corresponding
picture.

Ambient File (.amb suffix)
A binary file used to store diffuse interreflection values, which
are shared between cooperating rendering processes running
sequentially or in parallel. Since these values are view-
independent, sharing this information across multiple runs is
highly economical.

We will discuss each of these formats in turn, giving examples and
pointers to routines in the source code for reading and writing them, and the
programs that use them. In general, the ASCII text formats have no standard
routines for writing them, since they generally originate outside of Radiance
or are created with simple printf(3) statements. Most binary file formats are
machine and system independent, meaning they can be moved safely from
one place to another and Radiance will still understand them (provided no
unintentional character translation takes place along the way)*. Most binary
files also include a standard ASCII header at their beginning that may be read
by the getinfo program. This offers a convenient method for identifying the
file contents when the file name is ambiguous.

Scene Description Format (.rad suffix)

The semantics of the Radiance scene description format are covered in
the Reference Manual. We will therefore focus on the file syntax and
structure, which are simple and straightforward. In fact, some would say that
the Radiance scene description format is brain-dead, in the sense that it offers
few language amenities and requires the awkward counting of string and real
arguments (not to mention those non-existent integer arguments). We have
little to offer in its defense.

* The single exception to this rule is the Z-buffer file, whose contents are dictated by the floating point
representation and byte order of the originating machine. This choice was made for economic reasons,
and is rarely a problem.

__
Radiance File Formats Greg Ward Larson 3

The truth is, the scene format was designed to grow with Radiance, and
we wanted to keep it as simple as possible so as to encourage others to write
translators to and from it. Specifically, we wanted to be able to read files
using the scanf(3) library function and write files using printf(3).
Furthermore, we wanted everyone's parsers to be stable over time, which
meant no primitive-specific syntax. We also decided that a flat file structure
was most practical, since hierarchies are typically lost on the first translation,
and sufficient structure could be provided by the file system itself. Since we
did not intend text editing to be the primary input method, we felt the effects
of these programming decisions on the human readability and writability of
the format were less important.

Even so, the format is relatively easy to read and write once you get used
to it, and with the Radiance generator programs and in-line command
expansion, the text editor becomes a powerful modeling tool in the hands of
an experienced user. Together with the need for editing material descriptions,
our assumption that users would rarely edit these files turned out to be
mistaken. Consequently, it is a good idea for all users to familiarize
themselves with the scene description format, awkward or not.

Basic File Structure

There are four statement types in a scene description file: comments,
commands, primitives and aliases. These may be interspersed in the file, and
the only structural requirement is that modifiers precede the primitives they
modify.

Comments

The simplest statement type is a comment statement begins with a pound
sign ('#') and continues to the end of line:

This is a comment.

Commands

An in-line command, which begins with an exclamation mark ('!') and
continues to the end of line:

!xform -n chair1 -t 10 5 8 chair.rad

__
Radiance File Formats Greg Ward Larson 4

The command is executed during file parsing, and its output is read as
more input. Long commands may be continued on multiple lines by escaping
the newline character with a backslash ('\'):

!gensurf marble sink '15.5+x(theta(s),phi(t))' \
'10.5+y(theta(s),phi(t))' \
'30.75+z(theta(s),phi(t))' \
8 29 -f basin.cal -s

Since the command is executed by the shell, pipes and other facilities are
available as well. The following command creates a counter with a precisely
cut hole for the sink basin just given:

!(echo marble polygon sink_top 0 0 108 31 \
10.5 30.75 31 22 30.75 0 22 30.75 0 0 \
30.75 31 0 30.75 31 10.5 30.75 ; \
cnt 30 | rcalc \

-e '$1=15.5+x(theta(0),phi(1-$1/29))' \
 -e '$2=10.5+y(theta(0),phi(1-$1/29))' \

-e '$3=30.75' -f basin.cal)

Note in the above example that two commands are executed in sequence.
The first creates the counter perimeter, and the second cuts the hole. The two
commands are enclosed in parentheses, so if a final transformation is added
by xform with the -c option, it will be applied to both commands, not just the
last one.

Primitives

A primitive can be thought of as an indivisible unit of scene information.
It can be a surface, material, pattern, texture or mixture. The basic structure
of a primitive is as follows:

modifier type identifier
n S1 S2 S3 ..Sn
0
m R1 R2 R3 ..Rm

The modifier is the identifier of a previously defined primitive,
or "void" if no modifier is appropriate. The type is one of the supported
Radiance primitive keywords, such as polygon or plastic. Following the
modifier, type and identifier are the string arguments, preceded by the number
of string arguments and separated by white space. If there are no string
arguments, then 0 should be given for n. The string arguments are followed

__
Radiance File Formats Greg Ward Larson 5

by the integer arguments in the same fashion. (Since there are no
Radiance primitives currently using integer arguments, the count is always 0.)
Finally, the number of real arguments is given, followed by the real
arguments.

The location of the primitive in the scene description has no importance,
except that its modifier refers to the most recently defined primitive with that
identifier. If no such modifier was defined, an error results. In fact,
"undefined modifier" is the most frequently reported error when parsing an
invalid scene description, since any random bit of junk encountered where a
statement is expected will be interpreted as a modifier. One final note about
modifiers -- since surfaces never modify anything, their identifiers are neither
stored nor referenced in the parser's modifier list, and serve only for
debugging purposes during editing and rendering.

Within a primitive, white space serves only to separate words, and
multiple spaces, tabs, form feeds, returns, and newlines are all considered as
one separator. Consequently, it is not possible for a string argument to
contain any white space, which is OK because no Radiance primitive needs
this.

Aliases

An alias simply associates a new modifier and identifier with a previously
defined primitive. The syntax is as follows:

modifier alias new_identifier old_identifier

The old_identifier should be associated with some modifier
primitive (i.e., non-surface) given earlier. The modifier, if different from
the original, will be used instead in later applications of new_identifier.

Aliases are most often used to give new names to previously defined
materials. They may also be used to associate different patterns or textures
with the same material.

Scene Hierarchy

Hierarchical scene descriptions are achieved through expansion of in-line
xform commands. The xform command is used to read and place other
Radiance scene description files in the calling file, and these other
descriptions may in turn read others, and so on down the tree. No check is

__
Radiance File Formats Greg Ward Larson 6

made to assure that none of the calling files is called again, even by itself. If
this happens, commands open commands until the system runs out of
processes, which is a very nasty business and to be avoided.

Radiance Programs

The following table shows programs in the main Radiance distribution
that read and write scene description files. Additionally, there are other
translators that write scene files, which are available separately as free
contributions or as part of other (CAD) programs.

Program Read Write Function
arch2rad X Convert Architrion text file to Radiance
genblinds X Generate curved venetian blinds
genbox X Generate parallelepiped
genclock X Generate analog clock
genprism X Generate extruded polygon
genrev X Generate surface of revolution
gensky X Generate CIE sky distribution
gensurf X Generate arbitrary surface patch
genworm X Generate varying diameter curved path
ies2rad X Convert IES luminaire file to Radiance
mgf2rad X Convert MGF file to Radiance
mkillum X X Compute illum secondary sources
nff2rad X Convert NFF file to Radiance
objline X Generate line drawing of Radiance file
objview X Quick view of Radiance object
oconv X Compile Radiance scene description
obj2rad X Convert Wavefront .OBJ file to Radiance
rad X Render Radiance scene
rad2mgf X Convert Radiance file to MGF
raddepend X Determine scene file dependencies
replmarks X X Replace triangular markers with objects
rpict X Batch rendering program
rtrace X Customizable ray-tracer
rview X Interactive renderer
thf2rad X Convert GDS things file to Radiance
tmesh2rad X Convert triangle mesh file to Radiance

__
Radiance File Formats Greg Ward Larson 7

xform X X Transform Radiance objects

Table 1. Radiance programs that read and write scene descriptions.

Radiance C Library

The principal library function for reading scene description files is
readobj(inpspec), defined in src/common/readobj.c. This
routine takes the name of a file, or command beginning with '!', or NULL if
standard input is to be read, and loads the Radiance data structures defined in
src/common/object.h. If loading Radiance data structures is not the
action desired, then a more custom approach is necessary, such as that used
in src/gen/xform.c. If using Radiance data structures is acceptable,
but the data need not remain resident in memory, then follow the lead in
src/ot/getbbox.c and use src/ot/readobj2.c instead. In any
case, the list of defined primitive types in src/common/otypes.h is
crucial.

Function File Format (.cal suffix)

Function files are used throughout Radiance to specify mathematical
formulas and relations for procedural textures, patterns and surfaces. They
are also used by filter programs such as rcalc to manipulate data, and pcomb
to manipulate pictures.

Function file syntax is simple and should be familiar to most
programmers, as it is based on fairly standard algebraic expressions. Here is
an example, which corresponds to the in-line commands given in the previous
section:

{
basin.cal - calculate coordinates for basin sink.

}

theta(s) = PI*(0.5+0.5*s);
phi(t) = 2*PI*t;

R(th,p) = 5 + (3.25*cos(p)^2 +
1.75*sin(p)^2) * sin(th)^2;

x(th,p) = R(th,p)*sin(th)*cos(p);
y(th,p) = R(th,p)*sin(th)*sin(p);
z(th,p) = R(th,p)*cos(th);

In contrast to the usual semantics in programs where each statement
corresponds to an evaluation, statements in function files correspond to

__
Radiance File Formats Greg Ward Larson 8

definitions. Once a function or variable has been defined, it may be used in
later definitions, along with predefined functions such as sin(x) and
cos(x) and constants such as PI (¹). (All math functions use standard C
conventions, hence trigonometry is done in radians rather than degrees.)

Evaluation order (operator precedence) follows standard rules of algebra.
Exponentiation is performed first (x^y), followed by multiplication and
division (x*y, x/y), then addition and subtraction (x+y, x-y). Unary
minus is most tightly associated (-x), and parentheses override operator
precedence in the usual way. Semicolons separate statements, and white
space is generally ignored. Comments are enclosed by curly braces, which
may be nested.

The above file does not actually do anything, it merely defines functions
that are useful by a program that does. Taking our gensurf example from the
previous section:

!gensurf marble sink '15.5+x(theta(s),phi(t))' \
'10.5+y(theta(s),phi(t))' \
'30.75+z(theta(s),phi(t))' \
8 29 -f basin.cal -s

The -f option loads in our file, which is then used to evaluate expressions
such as '15.5+x(theta(s),phi(t))' for specific values of s and t.
These variables range from 0 to 1 over the surface patch in increments of 1/8
and 1/29, respectively. (See the gensurf manual page for details.) The entire
expression for each evaluation could have been written in the command line,
but it is much more convenient to create a function file.

Language Features

Subtle features of the functional language provide much greater power
than first meets the eye. One of these is the ability to define recursive
functions. The following example defines the factorial function (n!):

fact(n) : if(n-1.5, n*fact(n-1), 1);

This uses the library function if(cond,e1,e0), which returns e1 if
cond is greater than zero, and e0 otherwise. Since only one of these
expressions is evaluated, fact(n) will call itself until n is less than 2, when

__
Radiance File Formats Greg Ward Larson 9

the if expression returns 1*. The colon (':') is used in place of the usual
equals assignment ('=') because we want this function to have the constant
attribute, which means any later appearance in an expression of fact(ce)
where ce is also a constant expression will be replaced by its value. This can
be an important savings in cases where an expression or subexpression is
expensive to evaluate, and only needs to be computed once. All of the
standard library functions have the constant attribute. (See the following
section for a complete list.)

Another handy language feature is the ability to pass function names as
arguments. A simple example of this is the following function, which
computes the numerical derivative of a function given as its first argument:

FTINY : 1e-7;
d1(f,x) = (f(x+FTINY)-f(x-FTINY))/FTINY/2;

Evaluating d1(sin,1.1) using this formula yields 0.4536, which is
fairly close to the true derivative, which is cos(1.1).

A third language feature, which is normally transparent to the user, is the
notion of contexts. Identifiers may be composed of parts, starting with a
name and continuing with one or more context names. Each name is
delimited by a back-quote ('`'). Names themselves begin with a letter and
continue with any sequence of letters, digits, underscores and decimal points.
The following are examples of valid identifiers:

v1, V.W, x_rand`local, `A_, Qa_5`

If a context mark appears at the beginning of the identifier, then its
reference must be local. If it appears at the end, then its reference must be
global. A local reference must be resolved in the local context, i.e., no
contexts above this one will be searched. A global reference must correspond
to the original context, ignoring any local redefinitions.

The reason that contexts are normally transparent is that they are
controlled by the calling program -- there are no explicit language features for
establishing contexts. A new context is established automatically for each
function file loaded by the rendering programs. That way, it is safe to reuse

* Note that we compare n to 1.5, so as to avoid any round-off problems caused by floating point math.
Caution is advised because all expressions are evaluated as double-precision real, and comparisons to zero
are unreliable.

__
Radiance File Formats Greg Ward Larson 10

variable names that have been used in other files, and even in the main
initialization file, rayinit.cal.

Although not strictly necessary, there are two good reasons to define
variables and functions before referencing them in a function file. One is
related to contexts. If a previous definition of a variable name is given in an
enclosing context (e.g., rayinit.cal), then that reference will be used
rather than a later one in the current context, unless the reference is made
explicitly local by starting the identifier with a context mark. The second
reason for defining before referencing is constant expressions. If a variable or
function has the constant attribute (i.e., defined with ':' instead of '='), then a
later subexpression referencing it can be replaced by its evaluated result
during compilation. If the constant is not defined until after it is referenced, it
remains as a reference, which takes time to evaluate each time.

Other features of the language are truly transparent, but knowledge of
them can help one to write more efficient function files:

• Once a variable has been evaluated, the result is cached and it is
not reevaluated unless the client program changes an internal
counter (eclock), which indicates that something has changed.
This means that using variables to hold frequently used values
will not only simplify the function file, it will save time during
evaluation.

• An argument passed in a function call is not evaluated until the
function calls for it specifically, and the result is also cached to
avoid redundant calculation. The conditional evaluation feature
is actually a requirement for recursive functions to work, but
caching is not. Argument value caching means it is more
efficient to pass an expensive-to-compute expression than to
have the function compute it internally if it appears more than
once in the function definition. This is especially true for
recursive functions with deep call trees.

Standard Definitions (Library)

The following are always defined:

if(a, b, c)
Conditional expression. If a is positive, return b, else return c.

__
Radiance File Formats Greg Ward Larson 11

select(N, a1, a2, ..)
Return Nth argument. If N is 0, then return the count of
arguments excluding the first. This provides basic array
functionality.

sqrt(x)
Return square root of x, where x >= 0.

sin(x), cos(x), tan(x), asin(x), acos(x),
atan(x), atan2(y,x)
Standard trigonometry functions.

floor(x), ceil(x)
Greatest lower bound and least upper bound (integer).

exp(x), log(x), log10(x)
Exponent and logarithm functions.

rand(x)
Return pseudo-random number in the range [0,1) for any
argument x. The same return value is guaranteed for the same
argument.

The following are sometimes defined, depending on the program:

PI
The ratio of a circle's circumference to its diameter.

erf(z), erfc(z)
Error function and complimentary error function.

j0(x), j1(x), jn(n,x), y0(x), y1(x), yn(n,x)
Bessel functions.

hermite(p0,p1,r0,r1,t)
One-dimensional Hermite polynomial.

The rendering programs also define the following noise functions:

noise3(x,y,z), noise3x(x,y,z), noise3y(x,y,z),
noise3z(x,y,z)
Perlin noise function and its gradient [Perlin85][Arvo91,p.396].

fnoise3(x,y,z)
Fractal noise function, ranging from -1 to 1.

Interaction with the renderer is achieved via special purpose variables and
functions whose values correspond to the current ray intersection and the

__
Radiance File Formats Greg Ward Larson 12

calling primitive. Unlike the above functions, none of these have the constant
attribute since their values change from one ray to the next:

Dx, Dy, Dz
ray direction

Nx, Ny, Nz
surface normal

Px, Py, Pz
intersection point

T
distance from start

Ts
single ray (shadow) distance

Rdot
ray dot product

S
world scale

Tx, Ty, Tz
world origin

Ix, Iy, Iz
world i unit vector

Jx, Jy, Jz
world j unit vector

Kx, Ky, Kz
world k unit vector

arg(n)
real arguments, arg(0) is count

For BRDF primitives, the following variables are also available:

 NxP, NyP, NzP
perturbed surface normal

 RdotP
perturbed ray dot product

 CrP, CgP, CbP
perturbed material color

For prism1 and prism2 primitives, the following are available:

__
Radiance File Formats Greg Ward Larson 13

DxA, DyA, DzA
direction to target light source

Other functions, variables and constants are defined as well in the file
src/rt/rayinit.cal, which gets installed in the standard Radiance
library directory and can be modified or appended as desired*.

Radiance Programs

Table 2 shows Radiance programs that read and write function files.

Program Read Write Function
calc X X Interactive calculator
genrev X Generate surface of revolution
gensurf X Generate arbitrary surface patch
genworm X Generate varying diameter curved path
macbethcal X Compute image color & contrast correction
pcomb X Perform arbitrary math on picture(s)
rcalc X Record stream calculator
rpict X Batch rendering program
rtrace X Customizable ray-tracer
rview X Interactive renderer
tabfunc X Create function file from tabulated data

Table 2. Programs in the Radiance distribution that read and write
function files.

In addition, the program ev evaluates expressions given as command line
arguments, though it does not handle function files or definitions. There are
also a number of 2-d plotting routines that use a slightly modified statement
syntax, called bgraph, dgraph, gcomp, and igraph. Additional utility
programs are useful in combination with rcalc for data analysis and scene
generation. The program cnt generates simple records to drive rcalc, and the
total program is handy for adding up results. The histo program computes
histograms needed for certain types of statistical analysis. The lam program
concatenates columns from multiple input files, and neat neatens up columns
for better display.

* It is usually a good idea to store any such customized files in a personal library location and set the
RAYPATH environment variable to search there first. This way, it does not affect other users or get
overwritten during the next system installation.

__
Radiance File Formats Greg Ward Larson 14

Radiance C Library

The standard routines for loading and evaluating function files are divided
into three modules, src/common/calexpr.c for expression parsing and
evaluation, src/common/caldefn.c for variable and function storage
and lookup, and src/common/calfunc.c for library function storage
and function evaluation. There is a fourth module for writing out expressions
called src/common/calprnt.c, which we will not discuss. They all
use the header file src/common/calcomp.h, which defines common
data structures and evaluation macros. Of these, the three most often used
declarations for external routines are:

typedef struct epnode EPNODE;
Expression parse tree node. Some routines return pointers to
this structure type, and the main evaluation macro,
evalue(ep), takes an argument of this type.

(double) evalue(ep);
Evaluate an expression parse tree. Uses node type table to
access appropriate function depending on root node type. (E.g.,
an addition node calls eadd(ep).)

extern unsigned long eclock;
This is a counter used to determine when variable values need
updating. The initial value is 0, which tells the routines always
to reevaluate variables. Once incremented to 1, variable
evaluations are cached and not recomputed until eclock is
incremented again. Usually, client programs increment eclock
each time definitions or internal states affecting returned values
change. This assures the quickest evaluation of correct results.

The usual approach to handling definitions is to compile them into the
central lookup table; variable and function references are later evaluated by
traversing the stored parse trees. Syntax errors and undefined symbol errors
during evaluation result in calls to the user-definable routine eputs(s) to
report the error and quit(status) to exit the program. Domain and
range errors during evaluation set errno, then call the user-definable routine
wputs(s) to report the error and return zero as the expression result.

Following are standard routines provided for parsing from a file and
parsing from a string:

__
Radiance File Formats Greg Ward Larson 15

EPNODE *eparse(char *expr);
Compile the string expr into a parse tree for later evaluation
with evalue(ep).

epfree(EPNODE *ep);
Free memory associated with ep, including any variables
referenced if they are no longer defined.

double eval(char *expr);
Immediately parse, evaluate and free the given string expression.

fcompile(char *fname);
Compile definitions from the given file, or standard input if
fname is NULL.

scompile(char *str, char *fn, int ln);
Compile definitions from the string str, taken from file fn at
line number ln. If no file is associated, fn can be NULL, and
ln can be 0.

The following routines allow one to control the current context for
definition lookup and storage:

char *setcontext(char *ctx);
Set the current context to ctx. If ctx is NULL, then simply
return the current context. An empty string sets the global
context.

char *pushcontext(char *name);
Push another context onto the stack. Return the new (full)
context.

char *popcontext();
Pop the top context name off the stack. Return the new (full)
context.

The following functions permit the explicit setting of variable and
function values:

varset(char *vname, int assign, double val);
Set the specified variable to the given value, using a constant
assignment if assign is ':' or a regular one if it is '='. This is
always faster than compiling a string to do the same thing.

__
Radiance File Formats Greg Ward Larson 16

funset(char *fname, int nargs, int assign,
double (*fptr)(char *fn));
Assign the specified library function, which takes a minimum of
nargs arguments. The function will have the constant attribute
if assign is ':', or not if it is '='. The only argument to the
referenced function pointer is the function name, which will
equal fname. (This string must therefore be declared static.)
This offers a convenient method to identify calls to an identical
function assigned multiple tasks. Argument values are obtained
with calls back to the argument(n) library function.

The following functions are provided for evaluating a function or variable
in the current definition set:

double varvalue(char *vname);
Evaluate the given variable and return the result. Since a hash
lookup is necessary to resolve the reference, this is slightly less
efficient than evaluating a compiled expression via
evalue(ep), which uses soft links generated and maintained
during compilation.

double funvalue(char *fn, int n, double a);
Evaluate the function fn, passing n real arguments in the array
a. There is currently no mechanism for passing functions or
function name arguments from client programs.

These routines can be used to check the existence of a specific function
or variable:

int vardefined(char *vname);
Return non-zero if the named variable is defined. (If the symbol
is defined as a function, zero is returned.)

int fundefined(char *fname);
Return the number of required arguments for the named function
if it is defined, or zero if it is not defined. (If the symbol is
defined as a variable, zero is returned.)

These routines allow definitions to be cleared:

dclear(char *dname);
Clear the given variable or function, unless it is a constant
expression.

__
Radiance File Formats Greg Ward Larson 17

dremove(char *dname);
Clear the given variable or function, even if it is a constant
expression. Library definitions cannot be removed, except by
calling funset with a NULL pointer for the function argument.

dcleanup(int level);
Clear definitions. If level is 0, then just clear variable
definitions. If level is 2, then clear constants as well. If the
current context is local, then only local definitions will be
affected. If global, all definitions in all contexts will be affected.

These routines may be used during library function evaluation:

int nargum();
Determine the number of arguments available in the current
function evaluation context.

double argument(int n);
Evaluate and return the nth argument.

char *argfun(n);
Get the name of the function passed as argument n. (Generates
an error if the nth argument is not a function.)

Other, even more specialized routines are provided for controlling the
parsing process, printing out expressions and sifting through stored
definitions, but these are not accessed by most client programs. Worth noting
are the various compile flags that affect which features of the expression
language are included. The standard library sets the flags -DVARIABLE -
DFUNCTION -DRCONST and -DBIGLIB. Here is a list of compile flags
and their meanings:

-DVARIABLE
Allow user-defined variables and (if -DFUNCTION) user-
defined functions.

-DFUNCTION
Compile in library functions and (if -DVARIABLE) allow user-
supplied function definitions.

-DBIGLIB
Include larger library of standard functions, i.e., standard C math
library. Otherwise, only minimal library is compiled in, and
other functions may be added using funset.

__
Radiance File Formats Greg Ward Larson 18

-DRCONST
Reduce constant subexpressions during compilation. This can
result in substantial savings during later evaluation, but the
original user-supplied expressions are lost.

-DREDEFW
Issue a warning via wputs(s) if a new definition hides a
constant definition or library function, or replaces an existing,
distinct definition for the same symbol. (The varset routine
never generates warnings, however.)

-DINCHAN
Provide for "$N" syntax for input channels, which result in call-
backs to client-supplied chanvalue(n) routine on each
evaluation.

-DOUTCHAN
Provide for "$N" lvalue syntax for output channels, which are
evaluated via the chanout(cs) library function, which calls
(*cs)(n, value) for each assigned channel definition.

Data File Format (.dat suffix)

Although it is possible to store tabular data in a function file using the
select library function, it is more convenient and efficient to devote a
special file format to this purpose. Radiance data files store scalar values on
an N-dimensional rectangular grid. Grid (independent) axes may be regularly
or irregularly divided, as shown in Figure 1. This data is interpolated during
rendering (using N-dimensional linear interpolation) to compute the desired
values.

3 5 10 16 20

0.5

0.1

 Figure 1. A 2-dimensional grid with one regularly divided axis and one
irregularly divided axis. Each intersection corresponds to a data value that

appears in the file.

__
Radiance File Formats Greg Ward Larson 19

Data files are broken into two sections, the header and the body. The
header specifies the grid, and the body contains the data values in a standard
order. The first value in the file is a positive integer indicating the number of
dimensions. Next comes that number of axis specifications, in one of two
formats. For a regularly divided axis, the starting and ending value is given,
followed by the number of divisions. For an irregularly divided axis, two
zeros are followed by the number of divisions then that number of division
values. The two zeros are merely there to indicate an irregular spacing is
being specified. Once all the axes have been given, the header is done and
the body of the file begins, which consists of one data value after another.
The ordering of the data is such that the last axis given is the one being
traversed most rapidly, similar to a static array assignment in C.

A file corresponding to the topology shown in Figure 1 is:

######### Header ########
2 # Two-dimensional data array
0.5 0.1 5 # The regularly spaced axis
0 0 5 3 5 10 16 20 # The irregularly spaced axis
########## Body #########
The data values, starting with the
upper left, moving right then down:
 19.089 7.001 14.647 6.3671 8.0003
 3.8388 11.873 19.294 16.605 2.7435
 16.699 6.387 2.8123 16.195 17.615
 14.36 14.413 16.184 15.635 4.5403
 3.6740 14.550 10.332 15.932 1.2678

Comments begin with a pound sign ('#') and continue to the end of the
line. White space is ignored except as a data separator, thus the position of
header and data values on each line is irrelevant except to improve
readability.

__
Radiance File Formats Greg Ward Larson 20

Radiance Programs

Table 3 shows Radiance programs that read and write data files.

Program Read Write Function
ies2rad X Convert IES luminaire file to Radiance
mgf2rad X Convert MGF file to Radiance
rpict X Batch rendering program
rtrace X Customizable ray-tracer
rview X Interactive renderer

 Table 3. Programs in the Radiance distribution that read and write data
files.

Radiance C Library

The header file src/rt/data.h gives the standard data structures
used by the routines in src/rt/data.c for reading and interpolating data
files. The main data type is DATARRAY, which is a structure containing the
grid specification and a pointer to the data array, which is of the type
DATATYPE (normally float to save space).

The main routine for reading data files is getdata(dname), which
searches the standard Radiance library locations set by the RAYPATH
environment variable. The return value is a pointer to the loaded
DATARRAY, which may have been loaded by a previous call. (The routine
keeps a hash table of loaded files to minimize time and memory
requirements.) The freedata(dname) routine frees memory associated
with the named data file, or all data arrays if dname is NULL.

The routine that interpolates data values is datavalue(dp,pt),
which takes a DATARRAY pointer and an array of doubles of the appropriate
length (the number of dimensions in dp). The double returned is the
interpolated value at that point in the scalar field. If the requested point lies
outside the data's grid, it is extrapolated from the perimeter values up to a
distance of one division in each dimension, and falls off harmonically to zero
outside of that. This was selected as the most robust compromise, but to be
safe it is generally best to avoid giving out-of-domain points to datavalue.

__
Radiance File Formats Greg Ward Larson 21

Font File Format (.fnt suffix)

Font files are used for text patterns and mixtures, and by the psign
program to generate simple text labels. Each character glyph is set up on a
simple rectangular coordinate system running from [0,255] in x and y, and the
glyph itself is a polygon. Figure 2 shows an example of the letter "A".

0

0
255

255

X

Y

Figure 2. A glyph for an "A" character in standard font coordinates.
Note that the hole is made via a seam, just as with Radiance scene polygons.

The actual aspect and spacing of the character will be determined by the
client program.

Each glyph begins with the decimal value of that character's index, which
is 65 for "A" according to the ASCII standard. This is followed by the
number of vertices, then the vertices themselves in x1 y1 x2 y2 order. White
space again serves as a separator, and comments may begin with a pound sign
('#') and continue to the end of line. Here is the glyph entry for the letter "A"
corresponding to Figure 2:

65 15 # Helvetica "A"
155 222 242 48 185 48 168 86
83 86 65 48 12 48 101 222
155 222 128 179 126 179 97 116
155 116 128 179 155 222

If the number of vertices given is zero, then the character is a space. This
is not the same as no entry, which means there is no valid glyph for that

__
Radiance File Formats Greg Ward Larson 22

character. Glyphs may appear in any order, with indices ranging from 0 to
255. The maximum number of vertices for a single glyph is 32767.

Two standard font files are provided, "helvet.fnt" and "hexbit4x1.fnt".
The former is a Helvetica font from the public domain Hershey font set. The
second is a simple bit pattern font for hexadecimal encodings of bitmaps.

Radiance Programs

Table 4 shows Radiance programs that read and write font files.

Program Read Write Function
pcompos X Compose Radiance pictures
psign X Generate Radiance picture label
rpict X Batch rendering program
rtrace X Customizable ray-tracer
rview X Interactive renderer

 Table 4. Programs in the Radiance distribution that read and write font
files.

Radiance C Library

Similar to data files, font files are usually read and stored in a lookup
table. The data structures for fonts are in src/common/font.h, and the
routines for reading and spacing them are in src/common/font.c. The
main structure type is FONT. The routine getfont(fname) loads a font
file from the Radiance library (set by the RAYPATH environment variable),
and returns a pointer to the resulting FONT structure. If the file has been
previously loaded, a pointer to the stored structure is returned. The
freefont(fname) routine frees memory associated with the named font
file and deletes it from the table, or frees all font data if fname is NULL.

Three different routines are available for text spacing. The
uniftext(sp,tp,f) function takes the nul-terminated string tp and
computes uniform per-character spacing for the font f, returned in the short
integer array sp. (This is a fairly simple process, and all spacing values will
be 255 unless a character has no corresponding glyph.) The
squeeztext(sp,tp,f,cis) performs a similar function, but puts only
cis units between adjacent characters, based on the actual width of each
font glyph. The most sophisticated spacing function is
proptext(sp,tp,f,cis,nsi), which produces a total line length

__
Radiance File Formats Greg Ward Larson 23

equal to what it would be with uniform spacing, while maintaining equal
inter-character spacing throughout (i.e., proportional spacing). The nsi
argument is the number of spaces (zero-vertex glyphs) considered as an
indent. That is, if this many or more adjacent spaces occur in tp, the
indented text following will appear at the same point as it would have had the
spacing been uniform. This maintains columns in tabulated text despite the
proportional spacing. Tabs are not understood or interpreted by any of these
routines, and must be expanded to the appropriate number of spaces via
expand.

Octree Format (.oct suffix)

In Radiance, octrees are used to accelerate ray intersection calculations
as described by Glassner [Glassner84]. This data structure is computed by
the oconv program, which produces a binary file as its output. An octree file
contains a list of Radiance scene description files (which may be empty),
some information to guarantee portability between systems and different
versions of the code, followed by the octree data itself. If the octree file is
"frozen," then it will also contain the scene data, compiled into a binary
format for quick loading. This is most convenient for octrees that are used in
instance primitives, which may be moved to a different (library) location from
the originating scene files.

An octree recursively subdivides 3-dimensional space into 8 subtrees,
hence its name. Each "leaf" node contains between zero and MAXSET
surface primitives, indicating that section of space contains part or all of those
surfaces. (Surface primitives may appear more than once in the octree.) The
goal of oconv is to build an octree that contains no more than N surfaces in
each leaf node, where N is set by the -n option (5 by default). It may allow
more surfaces in places where the octree has reached its maximum resolution
(depth), set by the -r option (1024 -- depth 10 by default). Figure 3 shows a
quadtree dividing 2-dimensional space, analogous to our 3-dimensional
octree.

__
Radiance File Formats Greg Ward Larson 24

Figure 3. An example quadtree divided so that no leaf node contains
more than 2 objects. A three-dimensional octree works the same way. Each

leaf node is either empty, or contains a list of intersecting surfaces.

Basic File Structure

An octree file is divided into five sections: the information header, the
scene boundaries, the scene file names, the octree data structure, and the
compiled scene data. If the octree is frozen, then the compiled scene data is
included and the scene file names are not. Otherwise, the scene data is left
off.

Information Header

As with other binary Radiance formats, the beginning of an octree file is
the information header. The first line is "#?RADIANCE" to aid in
identification by the UNIX file program. Following this is the oconv
command (or commands) used to produce the octree, then a line indicating

__
Radiance File Formats Greg Ward Larson 25

the format, "FORMAT=Radiance_octree". The end of the information
header is always an empty line. Here is an example of an octree information
header, as reported by getinfo:

#?RADIANCE
oconv model.b90 desk misc
oconv -f -i modelb.oct window blinds lights lamp
FORMAT=Radiance_octree

The actual content of this header is ignored when an octree is read except
for the FORMAT line, which if it appears must match the one shown above.

Scene Boundaries

After the information header, there is a magic number indicating the
format version and the size of object indices (in bytes per index). This is a
two-byte quantity, which must be one of the following in the current release:

285 Two-byte object indices.

287 Four-byte object indices.

291 Eight-byte object indices. (Only supported on architectures with
64-bit longs.)

Technically, the code will also support odd-sized integers, but they are
not found on any existing machine architectures so we can forget about them.

Following the octree magic number, we have the enclosing cube for the
scene, which defines the dimensions of the octree's root node. The cube is
aligned along the world coordinate axes, so may be defined by one corner
(the 3-dimensional minimum) and the side length. For historical reasons,
these four values are stored as ASCII-encoded real values in nul-terminated
strings. (The octree boundaries may also be read using getinfo with the -d
option.)

Scene File Names

Following the octree dimensions, the names of the scene description files
are given, each stored a nul-terminated string. The end of this file list is
indicated by an empty string. If the octree is "frozen," meaning it contains the
compiled scene information as well, then no file names will be present (i.e.,
the first string will be empty).

__
Radiance File Formats Greg Ward Larson 26

Octree Data Structure

After the scene description files, an N-byte integer indicates the total
number of primitives given to oconv, where N is the size derived from the
magic number as we described. This object count will be used to verify that
the files have not changed significantly since the octree was written*.

After the primitive count, the actual octree is stored, using the following
recursive procedure:

puttree(ot) begin
if ot is a tree then

write the character '\002'
call puttree on each child node (0-7)

else if ot is empty then
write the character '\000'

else
write the character '\001'
write out the number of surfaces
write out each surface's index

end
end puttree

The number of surfaces and the surface indices are each N-byte integers,
and the tree node types are single bytes. Reading the octree is accomplished
with a complementary procedure.

Compiled Scene Data

If the octree is frozen, then this data structure is followed by a compiled
version of the scene. This avoids the problems of changes to scene files, and
allows an octree to be moved conveniently from one location and one system
to another without worrying about the associated scene files.

The scene data begins with a listing of the defined primitive types. This
list consists of the name of each type as a nul-terminated string, followed by
an empty string once the list has been exhausted. This permits the indexing of
primitive types with a single byte later on, without concern about changes to
Radiance involving src/common/otypes.h.

* Small changes that do not affect geometry will not cause problems, but if the primitive count changes, so
does the indexing of surfaces, and with that the octree data structure becomes invalid. A second check is
made to insure that no non-surface primitives appear in any leaf nodes, and this at least guarantees that
the renderer will not dump core from an outdated octree, even if the results are wrong.

__
Radiance File Formats Greg Ward Larson 27

The scene primitives are written one at a time. First is a single byte with
the primitive type index, as determined from the list given above. Second is
the N-byte modifier index, followed by the primitive's identifier as a nul-
terminated string. String arguments start with a 2-byte integer indicating the
argument count, followed by the strings themselves, which are nul-
terminated. Real arguments next have a 2-byte count followed by the real
values, each stored as a 4-byte mantissa followed by a 1-byte (signed)
exponent. (The mantissa is the numerator of a fraction of 2^31-1.) The end
of data is indicated with a -1 value for the object type (byte=255).

Radiance Programs

Table 5 shows Radiance programs that read and write octree files.

Program Read Write Function
getinfo X Print information header from binary file
oconv X X Compile Radiance scene description
rad X X Render Radiance scene
rpict X Batch rendering program
rpiece X Parallel batch rendering program
rtrace X Customizable ray-tracer
rview X Interactive renderer

 Table 5. Programs in the Radiance distribution that read and write
octree files.

Radiance C Library

Since reading an octree file also may involve reading a Radiance scene
description, some of the same library routines are called indirectly. The
header file src/common/octree.h is needed in addition to the
src/common/object.h file. The module src/ot/writeoct.c
contains the main routines for writing an octree to stdout, while
src/common/readoct.c contains the corresponding routines for reading
an octree from a file. Both modules access routines in
src/common/portio.c for reading and writing portable binary data.

Here is the main call for writing out an octree:

__
Radiance File Formats Greg Ward Larson 28

writeoct(int store, CUBE *scene, char *ofn[]);
Write the octree stored in scene to stdout, assuming the
header has already been written. The flags in store determine
what will be included. Normally, this variable is one of
IO_ALL or (IO_ALL & ~IO_FILES) corresponding to
writing a normal or a frozen octree, respectively.

Here is the main call for reading in an octree:

readoct(char *fname, int load, CUBE *scene,
char *ofn[]);
Read the octree file fname into scene, saving scene file
names in the ofn array. What is loaded depends on the flags in
load, which may be one or more of IO_CHECK, IO_INFO,
IO_SCENE, IO_TREE, IO_FILES and IO_BOUNDS.
These correspond to checking file type and consistency,
transferring the information header to stdout, loading the
scene data, loading the octree structure, assigning the scene file
names to ofn, and assigning the octree cube boundaries. The
macro IO_ALL includes all of these flags, for convenience.

Picture File Format (.pic suffix)

Radiance pictures differ from standard computer graphics images
inasmuch as they contain real physical data, namely radiance values at each
pixel. To do this, it is necessary to maintain floating point information, and
we use a 4-byte/pixel encoding described in Chapter II.5 of Graphics Gems
II [Arvo91,p.80]. The basic idea is to store a 1-byte mantissa for each of
three primaries, and a common 1-byte exponent. The accuracy of these
values will be on the order of 1% (+/-1 in 200) over a dynamic range from
10^-38 to 10^38.

Although Radiance pictures may contain physical data, they do not
necessarily contain physical data. If the rendering did not use properly
modeled light sources, or the picture was converted from some other format,
or custom filtering was applied, then the physical data will be invalid. Table
6 lists programs that read and write Radiance pictures, with pluses next to the
X-marks indicating where physical data is preserved (or at least understood).
Specifically, if the picture file read or written by a program has an "X+", then
it has maintained the physical validity of the pixels by keeping track of any

__
Radiance File Formats Greg Ward Larson 29

exposure or color corrections in the appropriate header variables, described
below.

Basic File Structure

Radiance picture files are divided into three sections: the information
header, the resolution string, and the scanline records. All of these must be
present or the file is incomplete.

Information Header

The information header begins with the usual "#?RADIANCE" identifier,
followed by one or more lines containing the programs used to produce the
picture. These commands may be interspersed with variables describing
relevant information such as the view, exposure, color correction, and so on.
Variable assignments begin on a new line, and the variable name (usually all
upper case) is followed by an equals sign ('='), which is followed by the
assigned value up until the end of line. Some variable assignments override
previous assignments in the same header, where other assignments are
cumulative. Here are the most important variables for Radiance pictures:

FORMAT
A line indicating the file's format. At most one FORMAT line is
allowed, and it must be assigned a value of either "32-
bit_rle_rgbe" or "32-bit_rle_xyze" to be a valid
Radiance picture.

EXPOSURE
A single floating point number indicating a multiplier that has
been applied to all the pixels in the file. EXPOSURE values are
cumulative, so the original pixel values (i.e., radiances in
watts/steradian/m^2) must be derived by taking the values in the
file and dividing by all the EXPOSURE settings multiplied
together. No EXPOSURE setting implies that no exposure
changes have taken place.

__
Radiance File Formats Greg Ward Larson 30

COLORCORR
A color correction multiplier that has been applied to this
picture. Similar to the EXPOSURE variable except given in
three parts for the three primaries. In general, the value should
have a brightness of unity, so that it does not affect the actual
brightness of pixels, which should be tracked by EXPOSURE
changes instead. (This variable is also cumulative.)

SOFTWARE
The software version used to create the picture, usually
something like "RADIANCE 3.04 official release
July 16, 1996".

PIXASPECT
The pixel aspect ratio, expressed as a decimal fraction of the
height of each pixel to its width. This is not to be confused with
the image aspect ratio, which is the total height over width. (The
image aspect ratio is actually equal to the height in pixels over
the width in pixels, multiplied by the pixel aspect ratio.) These
assignments are cumulative, so the actual pixel aspect ratio is all
ratios multiplied together. If no PIXASPECT assignment
appears, the ratio is assumed to be 1.

VIEW
The Radiance view parameters used to create this picture.
Multiple assignments are cumulative inasmuch as new view
options add to or override old ones.

PRIMARIES
The CIE (x,y) chromaticity coordinates of the three (RGB)
primaries and the white point used to standardize the picture's
color system. This is used mainly by the ra_xyze program to
convert between color systems. If no PRIMARIES line
appears, we assume the standard primaries defined in
src/common/color.h, namely "0.640 0.330 0.290
0.600 0.150 0.060 0.333 0.333" for red, green, blue
and white, respectively.

As always, the end of the header is indicated by an empty line.

__
Radiance File Formats Greg Ward Larson 31

Resolution String

All Radiance pictures have a standard coordinate system, which is shown
in Figure 4. The origin is always at the lower left corner, with the X
coordinate increasing to the right, and the Y coordinate increasing in the
upward direction. The actual ordering of pixels in the picture file, however, is
addressed by the resolution string.

X0
0

Y

N-1

M-1

Figure 4. The standard coordinate system for an MxN picture.

The resolution string is given as one of the following:

-Y N +X M
The standard orientation produced by the renderers, indicating
that Y is decreasing in the file, and X is increasing. X positions
are increasing in each scanline, starting with the upper left
position in the picture and moving to the upper right initially,
then on down the picture. Some programs will only handle
pictures with this ordering.

-Y N -X M
The X ordering has been reversed, effectively flipping the image
left to right from the standard ordering.

+Y N -X M
The image has been flipped left to right and also top to bottom,
which is the same as rotating it by 180 degrees.

__
Radiance File Formats Greg Ward Larson 32

+Y N +X M
The image has been flipped top to bottom from the standard
ordering.

+X M +Y N
The image has been rotated 90 degrees clockwise.

-X M +Y N
The image has been rotated 90 degrees clockwise, then flipped
top to bottom.

-X M -Y N
The image has been rotated 90 degrees counter-clockwise.

+X M -Y N
The image has been rotate 90 degrees counter-clockwise, then
flipped top to bottom.

The reason for tracking all these changes in picture orientation is so
programs that compute ray origin and direction from the VIEW variable in the
information header will work despite such changes. Also, it can reduce
memory requirements on converting from other image formats that have a
different scanline ordering, such as Targa.

Scanline Records

Radiance scanlines come in one of three flavors, described below:

Uncompressed
Each scanline is represented by M pixels with 4 bytes per pixel,
for a total length of 4xM bytes. This is the simplest format to
read and write, since it has a one-to-one correspondence to an
array of COLR values.

Old run-length encoded
Repeated pixel values are indicated by an illegal (i.e.,
unnormalized) pixel that has 1's for all three mantissas, and an
exponent that corresponds to the number of times the previous
pixel is repeated. Consecutive repeat indicators contain higher-
order bytes of the count.

__
Radiance File Formats Greg Ward Larson 33

New run-length encoded
In this format, the four scanline components (three primaries and
exponent) are separated for better compression using adaptive
run-length encoding (described by Glassner in Chapter II.8 of
Graphics Gems II [Arvo91,p.89]). The record begins with an
unnormalized pixel having two bytes equal to 2, followed by the
upper byte and the lower byte of the scanline length (which must
be less than 32768). A run is indicated by a byte with its high-
order bit set, corresponding to a count with excess 128. A non-
run is indicated with a byte less than 128. The maximum
compression ratio using this scheme is better than 100:1, but
typical performance for Radiance pictures is more like 2:1.

The physical values these scanlines correspond to depend on the format
and other information contained in the information header. If the FORMAT
string indicates RGB data, then the units for each primary are spectral
radiances over the corresponding waveband, such that a pixel value of (1,1,1)
corresponds to a total energy of 1 watt/steradian/sq.meter over the visible
spectrum. The actual luminance value (in lumens/steradian/sq.meter) can be
computed from the following formula for the standard Radiance RGB
primaries:

luminance = 179 * (0.265*R + 0.670*G + 0.065*B)

The value of 179 lumens/watt is the standard luminous efficacy of equal-
energy white light that is defined and used by Radiance specifically for this
conversion. This and the other values above are defined in
src/common/color.h, and the above formula is given as a macro,
luminance(col).

If the FORMAT string indicates XYZ data, then the units of the Y primary
are already lumens/steradian/sq.meter, so the above conversion is
unnecessary.

__
Radiance File Formats Greg Ward Larson 34

Radiance programs

Table 6 shows the many programs that read and write Radiance pictures.

Program Read Write Function
falsecolor X+ X Create false color image
findglare X+ Find sources of discomfort glare
getinfo X Print information header from binary file
macbethcal X X Compute image color & contrast correction
normpat X X Normalize picture for use as pattern tile
objpict X Generate composite picture of object
pcomb X+ X Perform arbitrary math on picture(s)
pcond X+ X Condition a picture for display
pcompos X X Composite pictures
pextrem X+ Find minimum and maximum pixels
pfilt X+ X+ Filter and anti-alias picture
pflip X+ X+ Flip picture left-right and/or top-bottom
pinterp X+ X+ Interpolate/extrapolate picture views
protate X+ X+ Rotate picture 90 degrees clockwise
psign X Create text picture
pvalue X+ X+ Convert picture to/from simpler formats
ra_avs X X Convert to/from AVS image format
ra_pict X X Convert to/from Macintosh PICT2 format
ra_ppm X X Convert to/from Poskanzer Port. Pixmap
ra_pr X X Convert to/from Sun 8-bit rasterfile
ra_pr24 X X Convert to/from Sun 24-bit rasterfile
ra_ps X Convert to B&W or color PostScript
ra_rgbe X X Convert to/from uncompressed picture
ra_t8 X X Convert to/from Targa 8-bit format
ra_t16 X X Convert to/from Targa 16-bit and 24-bit
ra_tiff X X Convert to/from TIFF 8-bit and 24-bit
ra_xyze X X Convert to/from CIE primary picture
rad X+ Render Radiance scene
ranimate X+ Animate Radiance scene
rpict X X+ Batch rendering program
rpiece X X+ Parallel batch rendering program
rtrace X X+ Customizable ray-tracer

__
Radiance File Formats Greg Ward Larson 35

rview X X+ Interactive renderer
vwright X Get view parameters and shift them
xglaresrc X Display glare sources from findglare
ximage X+ Display Radiance picture under X11
xshowtrace X Show ray traces on X11 display

Table 6. Radiance programs that read and write picture files. Pluses
indicate when a program makes use of or preserves physical pixel values.

Radiance C Library

There are a fair number of routines for reading, writing and manipulating
Radiance pictures. If you want to write a converter to or from a 24-bit image
format, you can follow the skeletal example in src/px/ra_skel.c. This
has all of the basic functionality of the other ra_* image conversion
programs, with the actual code for the destination type removed (or
simplified). The method in ra_skel uses the routines in
src/common/colrops.c to avoid conversion to machine floating point,
which can slow things down and is not necessary in this case.

Below we describe routines for reading and writing pictures, which rely
heavily on definitions in src/common/color.h. We start with the calls
for manipulating information headers, followed by the calls for resolution
strings, then the calls for scanline records.

Information headers are manipulated with the routines in
src/common/header.c and the macros in color.h. Features for
handing views are defined in src/common/view.h with routines in
src/common/image.c. Here are the relevant calls for reading and
copying information headers:

__
Radiance File Formats Greg Ward Larson 36

int checkheader(FILE *fin, char *fmt, FILE
*fout);
Read the header information from fin, copying to fout
(unless fout is NULL), checking any FORMAT line against the
string fmt. The FORMAT line (if it exists) will not be copied to
fout. The function returns 1 if the header was OK and the
format matched, 0 if the header was OK but there was no format
line, and -1 if the format line did not match or there was some
problem reading the header. Wildcard characters ('*' and '?')
may appear in fmt, in which case a globbing match is applied,
and the matching format value will be copied to fmt upon
success. The normal fmt values for pictures are COLRFMT for
Radiance RGB, CIEFMT for 4-byte XYZ pixels, or a copy of
PICFMT for glob matches to either. (Do not pass PICFMT
directly, as this will cause an illegal memory access on systems
that store static strings in read-only memory.)

int getheader(FILE *fp, int (*f)(), char *p);
For those who need more control, getheader reads the header
from fp, calling the function f (if not NULL) with each input
line and the client data pointer p. A simple call to skip the
header is getheader(fp,NULL,NULL). To copy the
header unconditionally to stdout, call
getheader(fp,fputs,stdout). More often,
getheader is called with a client function, which checks each
line for specific variable settings.

int isformat(char *s);
Returns non-zero if the line s is a FORMAT assignment.

int formatval(char *r, char *s);
Returns the FORMAT value from line s in the string r. Returns
non-zero if s is a valid format line.

fputformat(char *s, FILE *fp);
Put format assignment s to the stream fp.

isexpos(s)
Macro returns non-zero if the line s is an EXPOSURE setting.

exposval(s)
Macro returns double exposure value from line s.

__
Radiance File Formats Greg Ward Larson 37

fputexpos(ex,fp)
Macro puts real exposure value ex to stream fp.

iscolcor(s)
Macro returns non-zero if the line s is a COLORCORR setting.

colcorval(cc,s)
Macro assign color correction value from line s in the COLOR
variable cc.

fputcolcor(cc,fp)
Macro puts correction COLOR cc to stream fp.

isaspect(s)
Macro returns non-zero if the line s is a PIXASPECT setting.

aspectval(s)
Macro returns double pixel aspect value from line s.

fputaspect(pa,fp)
Macro puts real pixel aspect value pa to stream fp.

int isview(char *s);
Returns non-zero if header line s contains view parameters.
Note that s could be either a VIEW assignment or a rendering
command.

int sscanview(VIEW *vp, char *s);
Scan view options from the string s into the VIEW structure
pointed to by vp.

fprintview(VIEW *vp, FILE *fp);
Print view options in vp to the stream fp. Note that this does
not print out "VIEW=" first, or end the line. Therefore, one
usually calls fputs(VIEWSTR,fp) followed by
fprintview(vp,fp), then putc('\n',fp).

isprims(s)
Macro returns non-zero if the line s is a PRIMARIES setting.

primsval(p,s)
Macro assign color primitives from line s in the RGBPRIMS
variable p.

fputprims(p,fp)
Macro puts color primitives p to stream fp.

__
Radiance File Formats Greg Ward Larson 38

The header file src/common/resolu.h has macros for resolution
strings, which are handled by routines in src/common/resolu.c. Here
are the relevant calls:

fgetsresolu(rs,fp)
Macro to get a resolution string from the stream fp and put it in
the RESOLU structure pointed to by rs. The return value is
non-zero if the resolution was successfully loaded.

fputsresolu(rs,fp)
Macro to write the RESOLU structure pointed to by rs to the
stream fp.

scanlen(rs)
Macro to get the scanline length from the RESOLU structure
pointed to by rs.

numscans(rs)
Macro to get the number of scanlines from the RESOLU
structure pointed to by rs.

fscnresolu(slp,nsp,fp)
Macro to read in a resolution string from fp and assign the
scanline length and number of scanlines to the integers pointed
to by slp and nsp, respectively. This call expects standard
English-text ordered scanlines, and returns non-zero only if the
resolution string agrees.

fprtresolu(sl,ns,fp)
Macro to print out a resolution string for ns scanlines of length
sl in standard English-text ordering to fp.

The file src/common/color.c contains the essential routines for
reading and writing scanline records. Here are the relevant calls and macros:

int freadcolrs(COLR *scn, int sl, FILE *fp);
Read a scanline record of length sl from stream fp into the
COLR array scn. Interprets uncompressed, old, and new run-
length encoded records. Returns 0 on success, -1 on failure.

__
Radiance File Formats Greg Ward Larson 39

int fwritecolrs(COLR *scn, int sl, FILE *fp);
Write the scanline record stored in the COLR array scn, length
sl, to the stream fp. Uses the new run-length encoding unless
sl is less than 8 or greater than 32767, when an uncompressed
record is written. Returns 0 on success, -1 if there was an error.

int freadscan(COLOR *fscn, int sl, FILE *fp);
Reads a scanline of length sl from the stream fp and converts
to machine floating-point format in the array fscn. Recognizes
all scanline record encodings. Returns 0 on success, or -1 on
failure.

int fwritescan(COLOR *fscn, int sl, FILE *fp);
Write the floating-point scanline of length sl stored in the array
fscn to the stream fp. Converts to 4-byte/pixel scanline
format and calls fwritecolrs to do the actual write. Returns
0 on success, or -1 if there was an error.

colval(col,p)
Macro to get primary p from the floating-point COLOR col.
The primary index may be one of RED, GRN or BLU for RGB
colors, or CIEX, CIEY or CIEZ for XYZ colors. This macro is
a valid lvalue, so can be used on the left of assignment
statements as well.

colrval(clr,p)
Macro to get primary p from the 4-byte COLR pixel clr. The
primary index may be one of RED, GRN or BLU for RGB colors,
or CIEX, CIEY or CIEZ for XYZ colors. Unless just one
primary is needed, it is more efficient to call colr_color and
use the colval macro on the result.

colr_color(COLOR col, COLR clr);
Convert the 4-byte pixel clr to a machine floating-point
representation and store the result in col.

setcolr(COLR clr, double p1, p2, p3);
Assign the 4-byte pixel clr according to the three primary
values p1, p2 and p3. These can be either Radiance RGB
values or CIE XYZ values.

__
Radiance File Formats Greg Ward Larson 40

Z-buffer Format (.zbf suffix)

The Z-buffer format used in Radiance hardly qualifies as a format at all.
It is in fact a straight copy on the 4-byte machine floating point values of each
pixel in standard scanline order. There is no information header or resolution
string that would make the file independently useful. This is usually OK,
because Z-buffer files are almost always created and used in conjunction with
a picture file, which has this identifying information.

The major shortcoming of this format is that the machine representation
and byte ordering is not always the same from one system to another, which
limits the portability of Z-buffer files. Since they are primarily used for
interpolating animation frames, and this usually occurs on networks with
similar architectures, there is usually no problem. Also, since the adoption of
IEEE standard floating-point calculations, different machine representations
are becoming quite rare.

Radiance programs

Table 7 shows the programs that read and write Radiance Z-buffer files.
The pvalue program may be used to convert Z-buffer files to Radiance
pictures for the purpose of visualizing the values using falsecolor. For
example, the following command converts the Z-buffer file
"frame110.zbf" associated with the picture "frame110.pic" to a
viewable image:

% pvalue -h `getinfo -d < frame110.pic` -r -b -df
frame110.zbf | falsecolor -m 1 -s 40 -l Meters >
frame110z.pic

The getinfo program appearing in back-quotes was used to get the
dimensions associated with the Z-buffer from its corresponding picture file.

__
Radiance File Formats Greg Ward Larson 41

Program Read Write Function
pinterp X X Interpolate/extrapolate picture views
pvalue X X Convert picture to/from simpler formats
rad X Render Radiance scene
ranimate X X Animate Radiance scene
rpict X Batch rendering program
rtrace X Customizable ray-tracer

Table 7. Radiance programs that read and write Z-buffer files.

Radiance C Library

There are no library functions devoted to reading and writing Z-buffer
files in particular. The normal method is to read and write Z-buffer scanlines
with the standard fread and fwrite library functions using an appropriate
float array.

Ambient File Format (.amb suffix)

Radiance can store its diffuse interreflection cache in an ambient file for
reuse by other processes. This file is in a system-independent binary format,
similar to an octree or picture file, with an information header that can be read
using getinfo. Following the header, there is a magic number specific to this
file type, then the ambient value records themselves in encoded form.

Information Header

The information header begins with the usual "#?RADIANCE" identifier,
followed by the originating program and the ambient calculation parameters
(and octree name). After this is the line:

 FORMAT=Radiance_ambval

This identifies the general file type, followed by an empty line ending the
header. As with most information headers, this exact sequence need not be
followed, so long as there is no inconsistent FORMAT setting.

Magic Number

Following the information header is the two-byte magic number, which
for the current ambient file format is 557. This number may change later
should the file format be altered in incompatible ways.

__
Radiance File Formats Greg Ward Larson 42

Ambient Value Records

Ambient values are written to the file in no particular order. Each diffuse
interreflection value in Radiance has the following members:

Level
The number of reflections between the primary (eye) ray and this
surface. A value with fewer reflections may be used in place of
one with more, but not the other way around.

Weight
The weighting value associated with this ray or ambient value.
Similar to the level to avoid using inappropriate values from the
cache.

Position
The origin point of this interreflection calculation.

Direction
The surface normal indicating the zenith of the sample
hemisphere for this value.

Value
The calculated indirect irradiance at this point, in watts/sq.meter
(RGB color).

Radius
The cosine-weighted, harmonic mean distance to other surfaces
visible from this point, used to decide point spacing.

Posgradient
The position-based gradient vector, indicating how brightness
changes as a function of position in the sample plane.

Dirgradient
The direction-based gradient vector, indicating how brightness
changes as a function of surface orientation.

The members are stored one after the other in the above order using
system-independent binary representations. The Level member takes 1 byte,
Weight takes 5, Position takes 15, Direction another 15, Value is 4 bytes
(using the same color format as Radiance pictures), Radius takes 5 bytes, and
Posgradient and Dirgradient each take 15 bytes, for a total size of 75 bytes
per record.

__
Radiance File Formats Greg Ward Larson 43

Radiance Programs

Table 8 shows Radiance programs that read and write ambient files. The
program lookamb is especially useful for examining the contents of ambient
files and debugging problems in the calculation.

Program Read Write Function
getinfo X Print information header from binary file
lookamb X X Convert Radiance ambient file
rad X X Render Radiance scene
rpict X X Batch rendering program
rpiece X X Parallel batch rendering program
rtrace X X Customizable ray-tracer
rview X X Interactive renderer

 Table 8. Programs in the Radiance distribution that read and write
ambient files.

Radiance C Library

The src/rt/ambient.h file contains definitions of the AMBVAL
structure and certain details of the ambient file format. The
src/rt/ambio.c module contains the specialized routines for reading
and writing ambient files, and these functions in turn access routines in
src/common/portio.c for reading and writing portable binary data.
The information header is handled by the routines in
src/common/header.c, similar to the method described for
Radiance picture files. Here are the main calls from src/rt/ambio.c:

putambmagic(FILE *fp);
Put out the appropriate two-byte magic number for a Radiance
ambient file to the stream fp.

int hasambmagic(FILE *fp);
Read the next two bytes from the stream fp and return non-zero
if they match an ambient file's magic number.

int writeambval(AMBVAL *av, FILE *fp);
Write out the ambient value structure av to the stream fp,
returning -1 if a file error occurred, or 0 normally.

__
Radiance File Formats Greg Ward Larson 44

int readambval(AMBVAL *av, FILE *fp);
Read in the next ambient value structure from the stream fp and
put the result in av. Return 1 if the read was successful, 0 if the
end of file was reached or there was an error. The ambvalOK
function is used to check the consistency of the value read.

int ambvalOK(AMBVAL *av);
Return non-zero if the member values of the av structure are not
too outlandish. This is handy as insurance against a corrupted
ambient file.

Conclusion

We have described the main file formats native to Radiance and shown
how even the binary formats can be reliably shared in heterogeneous
computing environments. This corresponds to one of the basic philosophies
of UNIX software, which is system independence. A more detailed
understanding of the formats may still require some use of binary dump
programs and delving into the Radiance source code.

	Radiance File Formats
	Scene Description Format (.rad suffix)
	Basic File Structure
	Scene Hierarchy
	Radiance Programs
	Radiance C Library

	Function File Format (.cal suffix)
	Language Features
	Standard Definitions (Library)
	Radiance Programs
	Radiance C Library

	Data File Format (.dat suffix)
	Radiance Programs
	Radiance C Library

	Font File Format (.fnt suffix)
	Radiance Programs
	Radiance C Library

	Octree Format (.oct suffix)
	Basic File Structure
	Radiance Programs
	Radiance C Library

	Picture File Format (.pic suffix)
	Basic File Structure
	Radiance programs
	Radiance C Library

	Z-buffer Format (.zbf suffix)
	Radiance programs

	Ambient File Format (.amb suffix)
	Radiance Programs
	Radiance C Library

	Conclusion

