
RADIANCE:
a simulation tool for daylighting systems

Dr. R. Compagnon
The Martin Centre for Architectural and Urban Studies

University of Cambridge Department of Architecture
6 Chaucer Road, Cambridge CB2 2EB, UK

Tel: +44 1223 331 700 Fax: +41 1223 331 701

(July 1997)

This document serves as course notes. It is intended to complement the
RADIANCE original documentation giving more details in some essential
areas. Technical terms used within this document come mainly from the
lighting domain [CIE87] or the computer graphics domain [Jem92]; the
remaining terms are part of the specific jargon employed in the RADIANCE
original documentation.

This character type refers either to a command (a program
name) or the content of a file. Adjustable parameters
appear in italic.

Table of contents

Introduction... 2
Physical basis .. 3
General structure of the software.. 5

Structure of a "scene" file... 6
Model of a sky .. 7
Interactive visualisation using rview .. 8
The "exposure" of a RADIANCE picture.. 9
Rendering a picture using rpict... 10
Special projections using rtrace ... 11
Picture processing... 12

Model of a room daylit by an anidolic light-shelf 14
How ray tracing works within RADIANCE................................... 15
Illuminance calculations... 21
False colour pictures... 22
Assessing discomfort glare.. 23
Simulations with sunny skies.. 25

A few words on textures and patterns.. 27
Automation of the rendering process using rad........................ 28
RADIANCE distribution and user support................................... 29

References.. 30
Acknowledgements... 32
Appendices... 33

2

Introduction

RADIANCE development started in 1984 at the Lawrence Berkeley
Laboratory (Berkeley, USA). At the same time, the "radiosity" method was
first applied in the computer graphics domain. The "ray tracing" method
already used since the 1970s was considered to be incapable of computing
interreflections in a reasonable amount of time (note that this idea still
perpetuates in some recent publications). The most original part of
RADIANCE lies within its interreflection calculation algorithm that uses a
backward ray tracing method [War88a&b] [War92a]. As far as we know this is
one of the rare (or even the unique) implementations of a purely ray tracing
interreflection algorithm in a realistic rendering program; almost all other
similar programs are based on radiosity algorithms.

In 1990 the Laboratoire d’Energie Solaire et de Physique du Bâtiment
(LESO-PB in Lausanne, Switzerland) initiated a project on daylighting
simulation tools [Sca94]. Greg Ward, the principal author of RADIANCE,
joined that project for 9 months during which he greatly extended the
capabilities of the software especially for daylighting simulation purposes. In
parallel, RADIANCE has been included into the ADELINE software
developed within an IEA task. Since then, RADIANCE has been available in
two versions: the original one as free software for UNIX workstations and a
slightly limited MS-DOS version included within ADELINE. The latter is
distributed by the research teams that have contributed to ADELINE. This
course is based on that version. Differences from the original UNIX version
will be highlighted in the text.

RADIANCE is currently a mature ray tracing software package that enables
accurate and physically valid lighting and daylighting simulations [War90]
[War94b]. It is well established in the research community and has already
been used for many projects [War89] [Com92-94] [Pau92] [Fro93] [Lom93]
[Nov93] [War94c] [Cla96] [Moe96]. Some validation studies have also been
carried out on RADIANCE (see for instance references [Gry88-89] [Com94]
and [Mar97]). Due to to the great flexibility of RADIANCE (almost all
calculation procedures can be specifically controlled by the users through
appropriate parameters), any validation study reflects more the skills of the
user who performed it than just the accuracy of the internal algorithms!
However, they are many appropriate ways of using RADIANCE and the
material presented in this document should not be considered as the unique
or best practice for accurate simulation of daylighting systems.

Remarks:

A ray tracing bibliography is maintained on the Internet at:

http://www.cs.cf.ac.uk/Ray.Tracing/

A large bibliography on radiosity as well as other very interesting documents
regarding this technique are also available on the Internet at:

http://www.ledalite.com/library-/rrt.htm

http://www.cs.cf.ac.uk/Ray.Tracing/
http://www.ledalite.com/library-/rrt.htm

3

Physical basis

RADIANCE is based on the backward ray tracing algorithm. This means that
light rays are traced in the opposite direction to that which they naturally
follow. The process starts from the eye (the viewpoint) and then traces the
rays up to the light sources taking into account all physical interactions
(reflection, refraction) with the surfaces of the objects composing the scene.
Polarisation of light rays is not taken into account.

RADIANCE uses a geometrical description of the "scene" based on the
boundaries of objects (i.e. their external surfaces). The volumes enclosed by
these surfaces are always empty. Surfaces have definite orientation (i.e. a
normal vector is attached to each surface).

The objects composing the scene are described using a Cartesian co-
ordinate system (X,Y,Z). Originally the X axis is directed towards the East, the
Y axis towards the North and the Z axis towards the zenith. It is usually much
more convenient to align the principal planes of the scene (e.g. the walls of a
rectangular room) along the X,Y,Z axes and then to rotate the sky description
around the Z axis in order to correctly orient the scene (this will be explained
later).

Co-ordinates can be given in any unit of length. Of course when a single
scene is formed by more than one scene file, these must use same unit of
length.

Each single ray "carries" a certain amount of radiance (hence the name of
the software) expressed in [W/m2sr]. The radiance is divided into three
"channels" corresponding to the red, green and blue primary colours
(abbreviated as r,g,b). The total radiance R is calculated as a weighted sum
of the radiances Rr, Rg and Rb carried by the three channels:

R = 0.263.Rr + 0.655.Rg + 0.082.Rb [W/m2sr]

(note that: 0.263+0.655+0.082 = 1)

The transformation from radiance R (radiometric unit) to luminance L
(photometric unit) is given by:

L = 179.R = 47.1.Rr + 117.2.Rg + 14.7.Rb [cd/m2]

This method of handling colours relates to a perceptual model which is
unable to fully account for spectrally dependent properties. Compared to
programs where the spectral distribution of the light is modelled using many
channels covering narrow wavelength bands, RADIANCE is less precise
and is unable to model all possible colours. This disadvantage is far
outweighted by the fact that colour data for materials are much more
frequently available as colorimetric values (e.g. CIE XYZ tristimulus system).
than as detailed spectral curves! In addition, for our type of application
spectral effects are rather limited since colours commonly used in buildings
are not very saturated (i.e. their spectral reflection curves are smooth).

From the Y,x,y values the reflectances or transmittances C of the
corresponding materials are divided into the three red, green and blue
channels as follows (see file: rgb.cal):

4

Cr = 2.739.X -1.145.Y -0.424.Z
Cg = -1.119.X +2.029.Y +0.033.Z where: X = x.Y/y
Cb = 0.138.X -0.333.Y +1.105.Z Z = (1-x-y).Y/y

Exercise:

Start the gcalc program by typing the command:

gcalc rgb.cal

and use it to calculate the reflectances Cr Cg and Cb of some paints whose
Y,x,y values are listed in Appendix 1.

Remarks:

In the RADIANCE UNIX original version this program is named calc instead
of gcalc (this latter name has been chosen to avoid conflicts with another
program called calc originally included on PC systems).

Since version 2.5, RADIANCE uses a slightly different colour model. The
corresponding formulas become:

R = 0.265.Rr + 0.670.Rg + 0.065.Rb [W/m2sr]

L = 179.R = 47.4.Rr + 119.9.Rg + 11.7.Rb [cd/m2]

Cr = 2.565.X -1.167.Y -0.398.Z
Cg = -1.022.X +1.978.Y +0.044.Z
Cb = 0.075.X -0.252.Y +1.177.Z

The principles of tristimulus colorimetry and the transformations from Y,x,y to
Cr, Cg and Cb values are presented in a tutorial fashion in [Mey86]. An
annotated bibliography of relevant literature is also provided.

See also the "Frequently Asked Questions about color" document available
on the Internet from the page:

http://Home.InfoRamp.Net/~poynton/

"Photometry and Radiometry; a Tour Guide for Computer Graphics
Enthusiasts" provides a good tutorial on this subject. It is available on the
Internet from the page:

http://www.ledalite.com/library-/photom.htm

http://Home.InfoRamp.Net/~poynton/
http://www.ledalite.com/library-/photom.htm

5

General structure of the software

RADIANCE software comprises many programs that all perform specific
tasks. Depending on the data they handle, these programs can be divided
into three distinct categories:

Scene files

Generators

Rendering &
Calculations

Pictures &
numerical results

Data processing

Pictures in
"foreign" formats

Program
category

Files

Data flow

To enable a clear distinction between the various RADIANCE file types a set
of conventional extensions have been defined:

File content Extension File type
scene (materials and geometry definitions) .rad text
numeric data tables .dat text
functions .cal text
intermediate data to calculate glare indices .gla text
progress reports .log text
parameters defining a RADIANCE "project" .rif text
octree ("compiled" version of a scene) .oct binary*
RADIANCE picture .pic binary*
ambient illuminance values .amb binary*
TIFF format picture .tif binary

* Use getinfo to view a list of all commands and parameters that have
been used to produce these binary files: getinfo filename

6

Structure of a "scene" file

Scene files can contain four basic types of data described by a simple
syntax:

1) comments:

all lines beginning with character

2) primitives:

modifier type identifier
N S1 S2 S3 ... SN
0
M R1 R2 R3 ... RM

where:

modifier an identifier previously defined or void if no
modifier has to be applied

type the primitive type
identifier the name associated with this primitive
N the number of string arguments
M the number of real arguments
Sx Rx arguments for this specific primitive

Example:

a slightly specular red paint:
void plastic red_paint
0
0
5 1 .02 .02 0.03 0
sphere centred at location (1,1.5,0) with radius 2
red_paint sphere red_ball
0
0
4 1 1.5 0 2

3) calls to external programs:

!program_name parameters

Remarks: the outputs of the called program have to be formatted
according to scene file syntax. In the MS-DOS version, only programs
that belong to the RADIANCE software can be called this way!

4) identifier aliases:

modifier alias new_identifier old_identifier

Long input may extend over multiple lines using the \ continuation character
(see for example genprism calls in the chair.rad file).

7

Model of a sky

Example: a CIE overcast sky (cie.rad)

CIE overcast sky (Horizontal illuminance: 10000 Lux)
Ground reflectance: 0.1

!gensky 1 1 1 -c -b 22.8634396 -g 0.1

skyfunc glow sky_glow
0
0
4 1 1 1 0
sky_glow source sky
0
0
4 0 0 1 180

skyfunc glow ground_glow
0
0
4 1 1 1 0
ground_glow source ground
0
0
4 0 0 -1 180

Remarks:

The gensky program prepares the radiance distribution of the sky and
assigns the skyfunc identifier to it. In order to produce a sky giving a
specified horizontal illuminance Eh (in [lux]), the zenith radiance Rz has
been explicitly given using option -b. The following formulas serve for that
purpose:

CIE overcast sky: Rz =
9
7 .

Eh

 π.1 7 9

Uniform overcast sky: Rz =
Eh

 π.1 7 9

To specify colours for the sky and the ground while preserving the radiance
values imposed by skyfunc it is necessary to normalise (R = 1 [W/m2sr]) the
radiances Rr Rg and Rb passed as arguments to the glow material type. The
Crn Cgn and Cbn values defined in the rgb.cal file serve for this prupose.

Similarly the radiances Rr Rg and Rb of a light source of luminance L [cd/m2]
are calculated as:

Rr =
Crn . L

179 Rg =
Cgn . L

179 Rb =
Cbn . L

179

Exercise:

Modify the file wsol12.rad in order to model a spring equinox sky (21st of
March) at 13h00 (local time) and save it as a new file named equ13.rad
Give appropriate colours to the sky and the ground (use colours listed in
Appendix 1).

8

Interactive visualisation using rview

The rview program produces a picture that is displayed on the screen
while the calculations are performed. It mainly serves to detect errors in a
scene file and to choose appropriate view points.

Exercise:

Convert equ13.rad into an "octree" (compiled version of a scene) using the
oconv program:

oconv equ13.rad > equ13.oct

Choose a viewpoint (x,y,z coordinates) and a view direction (a vector
dx,dy,dz). Define the field of view of the picture by an horizontal angle (vh)
and a vertical angle (vv) (see Appendix 3). Start rview with the appropriate
options and their corresponding arguments (an option is a parameter of a
program that is specified by a name that begins with a character '-' and that
is followed by its argument value).

rview -vp x y z -vd dx dy dz -vh vh -vv vv equ13.oct

Remarks:

In this case the view point has absolutely no importance since the scene
only comprises two infinitely remote sources!

The programs that read octrees (e.g. rview) also access the original .rad
files. Therefore these original scene files should not be deleted after they
have been converted into an octree! For the same reason if an octree is
moved from one directory to another, the scene files that were merged into it
need also to be moved.

To following command prints a list of default values assumed for each
option:

rview -defaults

9

The "exposure" of a RADIANCE picture

The picture produced by rview first appears totally white! This is due to the
limited luminance range of the VDU screen: the upper luminance that can be
displayed is about 100 [cd/m2] while a real sky can well reach luminances
around 10000 [cd/m2]. To solve this problem an "exposure" factor (e) is
attached to each RADIANCE picture. For a pixel that has to depict a
luminance L, the screen displays it with a fraction P of its maximum
reachable luminance:

P = e .
L

179

P varies between 0 (pixel off) and 1 (pixel glowing at its maximum value).

The exposure e can be calculated by specifying a maximum luminance
Lmax over which a white coloured pixel will glow at its maximum value:

e =
179

Lmax

By default (e.g. when the calculation starts with rview) e = 1.

A specified exposure can be set to a picture by passing it through the pfilt
filter program:

pfilt -1 -e exposure_value orig.pic > final.pic

pfilt is also able to set an automatic exposure that is appropriate for the
picture:

pfilt orig.pic > final.pic

The exposure of a picture appears in the output of the getinfo program as
a line formatted like:

EXPOSURE=xxxxx

IMPORTANT! : the exposure is a multiplying factor. If getinfo outputs
multiple EXPOSURE lines for the same picture, its real exposure is the
PRODUCT of all these values. For the same reason, if a picture has an
exposure e1 that has to be adjusted to a new value e2, the exposure
parameter to specify when starting pfilt is the ratio e2/e1 instead of e2
only!

A proper exposure can be calculated from the accomodation level of the eye.
See reference [War94a] for details. From release 3.1, the UNIX RADIANCE
version also contains a very useful program called pcond which can filter a
picture according to human visual perception characteristics. The reference
[War97] gives full details about the features offered by pcond.

10

Rendering a picture using rpict

The usual way of computing RADIANCE pictures is to start the rpict
program in "background" mode (on a UNIX workstation) or in a MS-DOS
window (on a PC running Windows95) and wait for the final result while
performing other tasks...

Exercise:

Use rpict to produce a picture of the equ13.rad sky (the following
command must be given on a single line):

rpict -x X_#pixels -y Y_#pixels -t 60 -vd dx dy dz
-vh vh -vv vv equ13.oct > equ13.pic

The output of rpict is stored into the "picture file" equ13.pic
Option -t 60 specifies that a progress report is requested every 60
seconds. Once the picture is ready, the vgaimage program (MS-DOS
version) or the ximage program (UNIX version) can be used to display the
picture on the screen:

vgaimage equ13.pic or ximage equ13.pic

By clicking on a pixel and then pressing the "L" key, its luminance value is
displayed on the screen. Using this feature, devise an appropriate exposure
for the picture. Then use pfilt to adjust the exposure and put the result into
nequ13.pic

11

Special projections using rtrace

The rtrace program is able to trace rays in a scene from any point in any
direction. It is especially useful to produce numerical values (e.g. illuminance
profiles) or to render picture using special projections (e.g. stereographic or
cylindrical projections).

Exercise

How is it possible to produce a cylindrical projection of the sky defined in
equ13.rad ?
First a direction vector must be computed for each pixel composing the
picture. This is defined by formulas contained in the pcyl.cal file. The
picture size is defined by the parameters XD (number of horizontal pixels)
and YD (number of vertical pixels). The bottom line of the picture will be
associated to an altitude specified by the AM parameter (suggestion: use an
altitude just below the horizon like AM=-10). The top of the picture will always
be associated to the zenith (altitude=90°).

The rendering of the picture makes use of a series of programs linked by
"pipes". Note that this is a typical way of working on UNIX system!. The
following command must be given on a single line:

cnt YD XD |
rcalc -f pcyl.cal -e XD=XD;YD=YD;AM=AM |
rtrace -x XD -y YD -fac equ13.oct |
pfilt -1 -e .0179 > pcyl.pic

The cnt program produces a series of successive integer values grouped in
pairs, giving the x,y position of each pixel. Then these positions are
converted into direction vectors by rcalc. Each output line of rcalc
contains six values:

Xorig Yorig Zorig dx dy dz

These lines "feed" the rtrace program that will then trace rays starting from
points (Xorig,Yorig,Zorig) (in our case positioned at the origin 0,0,0) in
the directions given by the vectors (dx,dy,dz). Finally the exposure is set by
pfilt.

12

Picture processing

A RADIANCE picture can be considered as a matrix of positive real values
on which mathematical operations can be performed. Note that the
RADIANCE picture format does not allow pixels with negative values since
negative radiances have no physical meaning! [War91c]

They are many ways of transforming RADIANCE pictures using the pcomb
program which enables operations to be made over one or many pictures at
a time. As an example the following command superimposes azimuth and
altitude axes on pcyl.pic :

pcomb -f axis.cal -e XD=XD;YD=YD;AM=AM pcyl.pic > npcyl.pic

This command tells pcomb to compute output radiances according to the
formulas specified in the axis.cal file. These formulas use the axe variable
defined so that axe=1 for pixels located on the axis and axe=0 otherwise.
The if functions indicate that the output radiances are set to ro=go=bo=1
on the axis (this means that the axis will appear a white line). Everywhere
else the output radiances are set to the original values ri(1),gi(1) and
bi(1) of the input picture.

It is sometimes useful to assemble multiple pictures into a single one by
juxtaposition. The pcompos program serves for this purpose. In order to have
a resulting picture that fits within the screen limits, the input pictures should
first be reduced in size using the pfilt program. For instance to assemble
two pictures by juxtaposition their size are first reduced by a factor of 2:

pfilt -1 -x /2 -y /2 orig.pic > reduced.pic

Note that here pfilt does not perform any exposure adjustment since the
-1 option is set without any -e option specified.

Then the two reduced pictures are assembled either vertically (i.e. in a single
column):

pcompos -a 1 -s 5 first.pic second.pic > result.pic

or horizontally (i.e. in two columns):

pcompos -a 2 -s 5 first.pic second.pic > result.pic

Remarks:

The radiances R obtained by pcomb or pcompos are calculated from input
values that INCLUDE the specific exposure of each input picture:

R = f(e1.R1, e2.R2,... en.Rn)

instead of:

R = f(R1,R2,...Rn)

with Ri the radiance of the input picture i and ei its exposure.

The output pictures of these programs always have an exposure e=1. The
multiple EXPOSURE values obtained from getinfo refer to the original input

13

pictures only! This means that without special procedures, the radiance or
luminance values obtained from vgaimage or ximage will no longer be valid
for such pictures!

The getinfo program can also be used to get the pixel dimensions of a
picture: getinfo -d picture.pic

To export a RADIANCE picture to other programs it is necessary to convert it
to a more standard picture format (usually the TIFF format serves for this
purpose). The ra_tiff program performs this transformation:

ra_tiff -g gamma_value picture.pic picture.tif

By experience a gamma value of 1.8 is usually appropriate. For more details
regarding gamma correction see the FAQ documentation available on the
Internet at:

http://Home.InfoRamp.Net/~poynton/GammaFAQ.html

The program pvalue is able to extract the radiances Rr, Rg and Rb of each
pixel of a RADIANCE picture and convert them into an ASCII tabular format
that is then easy to read by any other application. To ensure that pvalue
outputs the radiance values without taking into account the exposure, option
-o must be used!

Exercise:

Use pcomb to draw axes on pcyl.pic. Then assemble the resulting picture
with pcyl.pic into a new composed picture and finally transform it into a
TIFF format picture.

http://Home.InfoRamp.Net/~poynton/GammaFAQ.html

14

Model of a room daylit by an anidolic light-shelf

The basic principles of RADIANCE have been introduced. Now we consider
a more detailed example of a rectangular simple room (length=7 [m],
width=5 [m], height=3 [m]) daylit from the south facade by two openings (see
Appendix 2). The lower window offers a direct view to the outside. The upper
opening is equipped with an anidolic internal light-shelf [Com93b] [Com94].
For convenience, these elements and their materials are defined in separate
.rad files:

cie.rad a CIE overcast sky
mat.rad definitions of the materials
room.rad the room with empty openings
system.rad the daylighting system alone (window glasses and the

anidolic light-shelf)

Remarks:

The system.rad file calls the genrator program genprism to build the
curved anidolic reflector at the line:

!genprism reflector ashelf ashelf.dat -c -e -l 0 0 5 | \
xform -rx 90 -rz 90 -t 0 0 3

The reflector profile is given in two dimensions as U,V coordinate pairs in the
ashelf.dat file. The output of genprism is then passed through the filter
program xform that enables the positioning of a scene using translations
(option -t) and/or rotations around the axes of the space (options -rx -ry
and -rz). The transformations are applied in the same order as they appear
on the command line.
Caution!

command: xform -t 1 0 0 -rz 90
is NOT equivalent to: xform -rz 90 -t 1 0 0

To get the extreme dimensions of a scene file (i.e. its bounding box in the
X,Y,Z space), use the following command:

getbbox filename.rad

Exercise:

Prepare the required transformations in order to position a desk (file
desk.rad) and a chair (file chair.rad) somewhere in the room. Write the
corresponding calls to xform in a new furnish.rad file. Then put the
required scene files together in an octree named model0.oct and make a
picture of this model using rview and the following view options:
-vp (viewpoint), -vd (view direction), -vh (horizontal view angle) and -vv
(vertical view angle).

Important: choose a view point and a view direction in order to have the
openings in the field of view!

To check the relative positions of the desk and the chair, use the objview
program that will quickly display the scene:

objview furnish.rad

15

How ray tracing works within RADIANCE

The first results are not really convincing. This points out the main difficulty of
using RADIANCE: how to control the ray tracing process in order to obtain
good results. Many adjustable parameters have to be properly set to achieve
this goal and the following section will explain, step by step, how the
principal parameters modify the ray tracing process. The symbols used in the
graphics are defined in Appendix 5.

STEP 1:

In the preceding example, rview was started without specifying any ray
tracing parameter; this means that neither light coming through
interreflections nor a constant ambient illuminance is taken into account (by
default rview uses options -ab 0 and -av 0 0 0). In addition the model
does not include any light source (the glow material type used to model the
sky is usually not considered as a light source!). Finally the sky seen through
the openings is the only thing that appears in the picture.

-ab 0 (no interreflections)
-av 0 0 0 (no ambient value)

vp

STEP 2:

Now in a second attempt an ambient value is set and is supposed constant
over the entire scene. This value is specified using option -av that needs
three radiances Rr, Rg and Rb as parameters. Usually the ambient value is
not coloured so that Rr=Rg=Rb=Ramb. Assuming a constant ambient
illuminance Eamb expressed in [lux], Ramb is calculated as:

Ramb = Eamb
179 . π

Exercise:

Calculate an appropriate ambient value for the scene and start rview again
adding the corresponding -av option after the same view options as before.

16

-ab 0
-av .889 .889 .889 (ambient value set to 500 lux)

vp

av

Now the objects of the scene appear uniformly lit and can be distinguished
by their respective colours. This simple method of illuminating a scene using
a constant ambient value is quite crude but very efficient since a single ray is
traced for each pixel.

STEP 3:

To calculate a better value of the ambient illuminance falling on a point,
RADIANCE is able to send additional rays (named "ambient" rays) in random
directions. By specifying option -ab 1 the first interreflection is taken into
account. The number of ambient rays that will be traced is specified using
option -ad (see Appendix 4).

Exercise:

Turn on the ambient calculation by specifying -ab 1 and -ad 64 to rview
but cancel any ambient value (-av 0 0 0). Observe the resulting picture
and then restart it by specifying an ambient value.

-ab 1 (one interreflection)
-ad 64 (64 ambient rays)
-av 0 0 0 (no ambient value)

vp
ambient rays

Since a limited number of ambient rays are traced, a small fraction of them
will by chance reach the openings and then the sky. Therefore the resulting
picture shows high contrasts where they are not really expected.

17

Note that the luminous patches appear more or less of spherical shape. This
is due to the "sphere of influence" attached to each ambient value. For all
points located in such a zone, RADIANCE will optimise its workload by
evaluating the ambient values from interpolations instead tracing many
additional ambient rays (see details in [War88a&b] [War92a]). The extent of
these spheres of influence (i.e. their radius) is determined according to the
rate of variation expected for the ambient value around the point where it has
been calculated. Where high variations are expected the radius is set at its
minimum value Rmin calculated as:

Rmin = Max_Size .
aa
ar

where Max_Size is the largest width occupied by the scene either on the X,Y
or Z axis (use getbbox to get it).
aa and ar are the values attached to the corresponding -aa and -ar
options.

Even with a constant ambient value, the spherical luminous patches do not
disappear. To solve this problem, one solution would be to greatly increase
the number of ambient rays (option -ad). For simple cases this is worth
trying. Appendix 4 can help in choosing an appropriate number of ambient
rays.

-ab 1 (one interreflection)
-ad 64 (64 ambient rays)
-av .889 .889 .889 (ambient value set to 500 lux)

vp

STEP 4:

A far better and more general solution is to make RADIANCE aware that the
openings are the effective sources of light for the indoor scene. This means
that the openings will then always be sampled by "direct rays".

A preprocessing of the scene file through the mkillum program is first
necessary. The surfaces that need to be transformed as secondary sources
must be identified. In our case we choose the view window and an invisible
surface located over the anidolic light-shelf. It is important to select surfaces
whose indicatrix of diffusion can be assumed to be reasonably constant over
their entire areas. In addition it is essential that these surfaces have their
normal pointing towards the right direction (in this case towards the interior
of the room).

18

The two surfaces to transform are described in the system.rad file:

#@mkillum i=trans80 d=223 s=115 m=window
trans80 polygon view_window
0
0
12
 4.8 0 1
 0.2 0 1
 0.2 0 2
 4.8 0 2

#@mkillum i=void d=1100 s=202 m=illum
void polygon illuminator
0
0
12
 0.2 1.52412861 2.12004394
 0.2 0 3
 4.8 0 3
 4.8 1.52412861 2.12004394
#@mkillum n

The lines beginning with #@mkillum specifies some parameters for the
mkillum program. #@mkillum n tells the program not to transform anything
before being told to. The parameter i= specifies the modifier of the surfaces
to be transformed. The parameter m= allows a specific name to be given to
the indicatrix of diffusion and to the data files that will store its values.

The parameter d= specifies the number of directions randomly sampled per
unit of projected solid angle. This parameter relates to the angular resolution
of the indicatrix of diffusion (see Appendix 4). The parameter s= serves to
specify the number of points randomly sampled over the surface when
producing the indicatrix. Depending on the geometry of the elements located
behind the surfaces that have to be transformed, the parameters d and s
have to be carefully adjusted! Otherwise undersampling effects may strongly
affect the accuracy of the resulting indicatrix of diffusion.

x1
surface
normal

Remark: "indicatrix of diffusion" or "scattering indicatrix" is defined by the CIE
as: the representation in space, in the form of a surface expressed in polar
coordinates, of the angular distribution function of luminance of an element
of surface of a medium that diffuses light by reflection or transmission
[CIE87].

Now the mkillum filter program can be started:

mkillum -ab 0 model0.oct < system.rad >isystem.rad

19

This process may take a long time. Therefore the resulting file isystem.rad
has already been computed. The definition of the window material has for
instance been transformed as:

void brightdata window.dist
5 noneg window.dat

illum.cal il_alth il_azih
0
9

-1.000000 0.000000 0.000000
0.000000 0.000000 1.000000
0.000000 1.000000 0.000000

window.dist illum window
1 trans80
0
3 5.626943 5.626943 5.626943

It is this illum material type that is treated as a secondary light source.
When it is directly seen (for instance when a ray is traced from the viewpoint
directly towards the window), this material behaves as its previous original
material (here trans80). Otherwise, this material behaves as a light source
whose total luminous flux density M can be calculated as:

M = R . 179 . π [lumen/m2]

where R is obtained from the three parameters Rr, Rg and Rb of the illum
material.

Exercise:

Create a new octree (named model1.oct) that comprises the secondary
sources and restart rview without any ambient calculation. Add the -dr 0
option when calling rview (the reason will be explained later).

-ab 0 (no interreflections)
-av 0 0 0 (no ambient value)
-ds 0 (no large source subdivision)

vp

The resulting picture is far better! But the light seems to emerge from the
centre of the window only. And note that for now, the direct illumination only
is taken into account!

20

STEP 5:

To correctly treat the window as a large source RADIANCE will automatically
split the area of the window into many smaller sources (see detailed
explanations in [War94b]). This process is controlled by the option -ds (see
Appendix 4 to set an appropriate value).

Exercise:

Turn on the automatic subdivision of large sources by specifying a value >0
for option -ds and restart the rendering process.

-ab 0 (no interreflections)
-av 0 0 0 (no ambient value)
-ds 0.3 (large source subdivisions on)

vp

STEP 6:

Finally the interreflections should also be taken into account in order to
compute an accurate picture.

-ab 1 (one interreflection)
-ad 64 (64 ambient rays)
-av 0 0 0 (no ambient value)
-ds 0.3 (large source subdivisions on)

vp

Exercise:

Use rpict with all required options set at their appropriate values to
produce an accurate picture of the model!

21

Illuminance calculations

RADIANCE is able to compute pictures whose pixels are irradiance values
instead of radiance. The option -i of the rendering programs rview and
rpict act as switch to this kind of calculation. When looking these pictures
using vgaimage or ximage, the values obtained by clicking on specific
pixels are either irradiance [W/m2] or illuminance [lux]. Note that this type of
picture is totally virtual since it is impossible to produce in the real world.

For such pictures, the exposure factor (e) is calculated from a maximum
illuminance level Emax in [lux]:

e =
179

Emax

But why spending much time to get a full irradiance picture ? Usually the
illuminance falling on a relatively limited number of points is sufficient to
know (for instance along an axis in the middle section of the room). The
rtrace program called with option -I serves for this purpose. As input it
needs a list of the points and orientations where illuminance measurement
will be performed. These are provided one per line as two vectors:

X Y Z Xdir Ydir Zdir

Finally the results of the rtrace program are piped to rcalc in order to
compute illuminance values from the three red, green and blue irradiances.
In the RADIANCE MS-DOS version, this typical series of programs "rtrace
-I | rcalc" has been merged into a new single program called rillum.
Its parameters are exactly the same as those for the rtrace program but the
output results are illuminance levels in [lux]. The call to rillum looks like:

rillum (rtrace options) model.oct <points.xyz >lux.dat

where points.xyz is a file containing the measurement points (the sign "<"
means that this file serves as the standard input of the rillum program). The
results are written in the output file lux.dat.

Exercise

Produce an irradiance picture with the same view and ray tracing options as
the one just produced before.

For the same model use rillum to compute a profile of illuminance levels
in the middle section of the room at an height level of 0.8 [m].

22

False colour pictures

It is often a good idea to present numerical results using a false colour scale.
The falsecolor program is able to perform this task on a RADIANCE
picture colouring each pixel according to its radiance value R. The values
are mapped to a nice rainbow coloured scale with its lower bound coloured
in blue and its upper bound coloured in red. To produce such a picture with
a linear scale (always starting from 0), the falsecolor command looks like:

falsecolor -i input.pic
 -s Max_scale -l label -n #divisions >result.pic

(This command must be given on a single line)

where:

input.pic is the picture containing the values that will be mapped to
the coloured scale

Max_scale is the luminance or illuminance value of the upper bound of
the scale (every pixel that has higher values will be
coloured in red)

label is the title that will appear on the top of the coloured scale
appended at the left of the original picture (usually the label
refers to the unit of the scale such as [cd/m2] or [lux])

#divisions specifies the number of numerical labels that will be
superimposed on the coloured scale

With option -cl the program will instead superimpose #divisions
coloured contour lines onto a background picture (specified by option -p):

falsecolor -cl -i input.pic -p background.pic
 -s Max_scale -l label -n #divisions >result.pic

This command is very convenient for instance to superimpose isolux curves
onto a normal picture of a daylit space. This means that input.pic and
background.pic must be of the same size and rendered with the same
view parameters but as an illuminance picture for the former (using option -i
of either rview or rpict) and as a normal luminance picture for the latter.
This kind of resulting picture is of great value because it combines
quantitative information (the isolux curves) onto a picture of the space that is
less objective (since its exposure can be arbitrarily changed to obtain the
desired appearance).

Exercise

Experience falsecolor using the pictures produced so far.

23

Assessing discomfort glare

Discomfort glare is experienced when excessively bright areas are
perceived in the field of view. To quantify the sensation of discomfort glare,
many "glare indices" have been defined. Nevertheless they are all based on
the same kind of parameters. Basically, each excessively bright area is
considered as a "source". In fact this reflects the origins of the methods
involved which mainly concentrated on artificial lighting installations where
each luminaire (= an obvious light source) might create discomfort glare. For
daylit scenes, the selection of the parts of the field of view that have to be
considered as "sources" is less straightforward.

To compute glare indices using RADIANCE, two steps are involved. First the
relevant parameters are computed from a calculated picture (or directly from
an octree, see [War91b] for details) by the findglare program. The
computed parameters are then passed to the glarendx program.

First step:

findglare -p input.pic -t L_threshold -v >result.gla

where:

input.pic is a calculated picture taken from the point of view for which
discomfort glare has to be assessed

L_threshold is the threshold luminance value in [cd/m2]

The threshold value is used by the program to devise which parts must be
treated as "sources". Briefly explained, every pixel whose luminance exceed
the threshold will first be pinpointed and later merged with neighbouring
similar pixels to form individual sources. The resulting parameters describing
the positions of the sources found in the picture, the angular extents they
subtend (solid angles) and their luminances are finally passed to the output
file result.gla. Option -v simply asks the program to print progress
reports while running.

Second step:

glarendx -t index_type input.gla

where:

index_type is the name of the discomfort glare index to be computed (to
get a list of available indices call glarendx without any
argument).

The output of glarendx will comprise two numbers: the first column gives
the angle between the view direction for which the glare index has been
calculated and the original view direction of the input picture (in our case it
will always be 0) and the second column is the requested discomfort glare
index value. Note that by using option -t vert_ill the glarendx program
will return the illuminance measured at the eye level in [lux].

The UNIX RADIANCE version includes a very convenient program called
xglaresrc that displays a picture (using ximage) and superimposes circles
around each of the sources identified by findglare.

24

Remarks:

There is no definitive method to devise appropriate values for the threshold
luminance. However, the resulting final discomfort glare indices that strongly
depend on the threshold do not have great significance by themselves. They
are much more valuable when analysed by comparison with other cases.

One possible way of devising a non arbitrary luminance threshold is given
by a graph found in reference [Hop70] showing the approximate upper
luminance limit under which discomfort glare is not experienced. The
corresponding fitted function ulim(La) is the following (contained in the
ulim.cal file):

fl2cd(v)=3.426*v;
cd2fl(v)=.292*v;
ulim(La)=fl2cd(10^(5.731+(log10(cd2fl(La))+5)*
 (0.3376+(log10(cd2fl(La))+5)*0.0189)-6));

The ulim function takes the adaptation luminance La in [cd/m2] as its
argument and returns a threshold luminance also in [cd/m2]. The adaptation
luminance is not easy to devise for a complex scene since this notion is
mainly relevant for experiments on vision where a small target is presented
against a background of uniform luminance to which the eyes are adapted.
For complex scenes, the adaptation is probably also dependent on the
details on which the attention is focused. This is a domain where further
reserach is still needed. Anyway, it is common to assume that the
illuminance Eeye measured in the scene at eye level is in fact due to a
uniform adaptation luminance La over the whole field of view:

La =
Eeye

π [cd/m2]

Then the threshold value can be calculated using the piped commands
(given on a single line):

findglare -p input.pic -t 100000 | glarendx -h -t vert_ill
| rcalc -f ulim.cal -e $1=ulim($2/PI)

At this stage the very high threshold value used with findglare just
ensures that the program does not spend time searching for sources since
we just need an illuminance value.

Since findglare should normally analyse pictures covering the whole field
of view, it is recommended to use hemispherical input pictures (rendered
with options -vth -vh 180 -vv 180). Nevertheless, findglare is able to
handle pictures covering smaller portions of the field of view.

Exercise:

Experience discomfort glare calculations using the pictures produced so far.

25

Simulations with sunny skies

The orientation of the building becomes of great importance with sunny skies
since, unlike the standard overcast skies, their luminance distributions have
no circular symmetry around the zenith (Z axis). This means that if the scene
describing the building is, for convenience, kept aligned along the principal
axes (X,Y,Z), the file describing the sky should be orientated by a proper
rotation. If the North direction makes an angle Ω (degrees) with the Y axis (as
illustrated below the angle is counted positively in the anticlockwise
direction), the corresponding rotation of the sky is obtained by the command:

xform -rz Ω orig_sky.rad > oriented_sky.rad

North

X axis

Yaxis

Ω

Now see what happens when using sunny skies with models comprising
materials of mirror or prism type. For instance consider a horizontal
specular light-shelf where the point A is clearly lit by the sun after a reflection
on the light-shelf.

A

Sun

“Virtual” Sun

Without precautions, RADIANCE will not take this illumination into account.
The sun is defined as a light source that attracts direct rays but because the
sun is located behind the opaque surface on which point A lies, no direct
rays will be traced! Then the ambient rays may try to reach the sun after
reflection by the light-shelf, but this is unlikely to happen because of the
limited number of ambient rays and the very small solid angle covered by the
sun.

26

This means that a "trick" has to be devised to force RADIANCE to trace direct
rays towards the light-shelf and then towards the sun. This is automatically
done at the beginning of the calculations by creating "virtual" light sources
for each real source reflected by a mirror or refracted by a prismatic element.
Then RADIANCE is somehow "cheated": from point A a direct ray will be
traced towards the virtual sun but along its path this ray will encounter the
light-shelf and will then continue towards the real sun!

The option -dr 1 instructs the ray-tracing program to build virtual sources of
1st order. When direct rays may encounter more than one specular reflection
or refraction before being redirected towards the true sun, virtual sources of
2nd generation (virtual sources of virtual sources) have also to be created
and would require a -dr 2 option. See [War94b] for additional details.

Up to now it was recommended to use option -dr 0 when doing the
exercises. This is because in our case, the anidolic curved light-shelf is
composed of many small flat reflectors and therefore, when starting the
calculations, it would take a very long time for the program to figure out that
no virtual sources need to be created since all sources we have in our scene
(remember that we use an overcast sky and that we have two secondary
sources namely the lower window and the "illuminator") do not reflect
through the reflector (this becomes clear when looking at the geometrical
arrangement of the sources relatively to the reflector).

Of course if a sunny sky is used with our scene, then -dr 1 is essential to
generate a virtual sun for each facet of the reflector. But at this stage we
reach a fundamental limitation of RADIANCE: since curved surface are
approximated by small flat facets, the reflections appear as discontinuous
bands instead of a single bright continuous area.

27

A few words on textures and patterns

In the RADIANCE context a "texture" is a local perturbation of the surface
normal and a "pattern" is a local perturbation of the surface colour. They are
usually defined on a smaller scale than that of the model (typically 1/10 to
1/100). Both have considerable impacts on the realistic appearance of the
renderings. However, they can be considered as of secondary importance
when using RADIANCE mainly for computing lighting performances of
spaces. For instance it is far simpler and numerically equivalent to take the
patterns into account using mean reflectances and to use the corresponding
uniformly coloured materials.

The file pmat.rad gives some examples:

- a skirting_board is defined for the walls by defining a pattern that
changes the colour of the walls on the first 6 [cm] above floor level;

- a parquet pattern is defined for the floor by applying a ±30% random
variation on the original reflectance of the floor on small 20[cm]x5[cm]
rectangular patches;

- a texture is used to define 2[cm] wide joins between rectangular plates
of 25 [cm] width positioned on the ceiling. This texture only modifies
the surface normal along the Y axis for the positions located on the
joins. The perturbation is calculated by the y_pert function defined in
the plate.cal file.

Exercise:

Rebuild a new octree for the model but replace the file mat.rad by
pmat.rad that comprises the definitions of the skirting_board and parquet
patterns and plate texture. Render new pictures using this octree.

28

Automation of the rendering process using rad

The purpose of the rad program is to automate the rendering process. In
particular it relieves the user from the painful task of setting appropriate
values for all the options that control the ray-tracing process. The user only
needs to prepare a "project" file specifiying the name of the involved scene
files, the view parameters for the pictures to produce, and some additional
intuitive control variables either of qualitative (e.g. the quality level expected
for the resulting pictures: either low, medium or high) or quantitative nature
(e.g. the zone of interest in the scene defined by the coordinates of the
bounding cube enclosing the zone). See reference [War95] for details.

Nevertheless, users who master the setting of the RADIANCE ray-tracing
options can specify their values explicitely (hopefully these tutorial notes will
help in reaching this level...). Then rad can be considered as a convenient
automated rendering process. Long command lines are avoided and thus
the risk of making typing errors is highly reduced. To generate all pictures
that are described in a project file input.rif the command to issue is
simply:

rad input.rif

Before starting the calculations, it is sometimes very useful to find out which
commands rad will issue or to check which values have been assigned to
the ray-tracing options. This can simply be done using rad with its -n
option:

rad -n input.rif

rad is clever enough to check the dependencies between various files. For
instance if rad is asked to produce a picture after it has already completed a
preceding one, the octree that already exists will not be rebuilt unless some
of the scene files have been edited in the meantime. This feature is
comparable to the make utility program common to UNIX systems [Tal89].

Illuminance profiles, the production of false colour pictures and the
calculation of discomfort glare indices are not supported by the rad program.

Exercise:

Have a look at the cell.rif project file and try using it with rad

29

RADIANCE distribution and user support

The RADIANCE UNIX version is freely available on the Internet. The latest
version is available by anonymous ftp from one of these WWW servers:

http://lesowww.epfl.ch/radiance/radiance.html

or

http://radsite.lbl.gov/radiance/

Only the source code is distributed. That means that some computer skills
are then necessary to compile and install the software (although an
interactive automatic installation procedure is provided).

It is worth looking at the RADIANCE-DIGEST (available from the WWW sites)
which is a compilation of questions asked by RADIANCE users and the
answers given to them.

A discussion list is also organised where people using RADIANCE share
their problems and (sometimes...) solutions. To subscribe to the list send a
request to: radiance-request@radsite.lbl.gov

The references [War88b] [War91a] [War92a] [War92b] [War94b] [War95] and
[War97] are available on the Internet from:

http://radsite.lbl.gov/radiance/papers/

The ADELINE package also has dedicated WWW servers but it is not
available for free (its price is around 450 US$):

http://www.ibp.fhg.de/wt/adeline/adeline.htm

or

http://radsite.lbl.gov/adeline/

Each distribution site defines its own policy regarding the user support it
offers.

http://lesowww.epfl.ch/radiance/radiance.html
http://radsite.lbl.gov/radiance/
http://radsite.lbl.gov/radiance/papers/
http://www.ibp.fhg.de/wt/adeline/adeline.htm
http://radsite.lbl.gov/adeline

30

References

[CIE87] Commission Internationale de l'Eclairage
Vocabulaire international de l'éclairage
Publication CIE n° 17.4, 1987.

[Cla96] J.A. Clarke, J.W. Hand, J. Hensen, K. Johnsen, K. Wittchen, C. Madsen,
R. Compagnon
Integrated Performance Appraisal of Daylight-Europe Case Study
Buildings
Fourth European Conference "Solar Energy in Architecture and Urban
Planning", Proceedings, Berlin, Germany, 1996.

[Com92a] R. Compagnon, B. Paule, J.-L. Scartezzini
Etude en éclairage naturel de la nouvelle imprimerie A.B.C. à
Schoenbuehl (BE)
Publication du CUEPE No 48, Université de Genève, 1992.

[Com92b] R. Compagnon, F. Di Pasquale, B. Paule, J.-L.Scartezzini
Simulation de systèmes d'éclairage naturel complexes
7. Schweizerische Status-Seminar, Energieforschung im Hochbau, ETH-Zürich,
1992.

[Com93a] R. Compagnon, B. Paule, J.-L. Scartezzini
Design of New Daylighting Systems Using Adeline Software
Solar Energy in Architecture and Urban Planning, Florence, Italy, 1993.

[Com93b] R. Compagnon, J.-L. Scartezzini, B. Paule
Application of Nonimaging Optics to The Development of New
Daylighting systems
ISES Solar World Congress, Budapest, Hungary, 1993.
(also available on the Internet from the Anidolic Daylighting Systems page:
http://lesowww.epfl.ch/daylighting/anidolic-intro.html)

[Com94] R. Compagnon
Simulations numériques de systèmes d’éclairage naturel à
pénétration latérale
Thèse n° 1193, EPFL, 1994.

[Fro93] K. Frost, M. Donn, R. Amor
The Application of RADIANCE to Daylighting Simulation
Building Simulation'93, Conference Proceeding, 1993.

[Gry88] A. Grynberg
Comparison and Validation of Radiance and Superlite
Internal report, Windows and Daylighting Group, LBL, Berkeley, 1988.

[Gry89] A. Grynberg
Validation d'un programme de simulation d'éclairage: Radiance
LBID 1575, LBL, Berkeley, 1989.

[Hop70] R. G. Hopkinson, J. B. Collins
The Ergonomics of Lighting
Macdonald & Co. (Publishers) Ltd, London, 1970

[Jem92] F. Jemaa
Dictionnaire bilingue (Anglais/Français) de l’infographie
Eyrolles, Paris, 1992.

[Lom93] K. J. Lomas, J. Mardaljevic
Advanced daylighting design in atrium buildings
Solar Energy in Architecture and Urban Planning, Florence, Italy, 1993.

http://lesowww.epfl.ch/daylighting/anidolic-intro.html

31

[Mar97] J. Mardaljevic
Validation of a Lighting Simulation Program: A Study Using
Measured Sky Brightness Distributions
Lux Europa 97 Conference Proceedings, 1997.

[Mey86] G. W. Meyer
Tutorial on color science
The Visual Computer, 2:278-290, Springer-Verlag,1986.

[Moe96] M. Moeck, E.S. Lee, M.D. Rubin, R. Sullivan, S.E. Selkowitz
Visual Qality Assessment of Electrochromic and Conventional
Glazings
SPIE Conference "Optical Materials Technology for Energy Efficiency and Solar
Energy Conversion XV", Freiburg, Germany, September 1996.

[Nov93] B.J. Novitski
Energy Design Software
Architecture, pp. 125-127, June1993.

[Pau92] B.Paule, R. Compagnon, J.-L. Scartezzini
Conception optimale de l'éclairage natuel d'un bâtiment industriel
7. Schweizerische Status-Seminar Energieforschung im Hochbau, ETH-Zürich,
1992.

[Sca94] J.L. Scartezzini, R. Compagnon, G. Ward, B. Paule
Outils informatiques en lumière naturelle
Rapport du projet NEFF 435.2, LESO-PB, EPF Lausanne, 1994.

[Tal89] S. Talbott
Managing Projects with Make
Nutshell Series, O'Reilly & Associates, 1989.

[War88a] G.J. Ward, F.M. Rubinstein.
A New Technique for Computer Simulation of Illuminated Spaces
Journal of the Illuminating Engineering Society, vol. 17, n°1, 1988.

[War88b] G.J. Ward, F.M. Rubinstein, R.D.Clear
A Ray Tracing Solution for Diffuse Interreflection
Computer Graphics, vol. 22, n°4, 1988.

[War89] G.J. Ward, F.M. Rubinstein, A. Grynberg
Luminance in Computer - Aided Lighting Design
Proceedings of Buildings Simulation '89, Vancouver, 1989.

[War90] G.J. Ward
Visualization
Lighting Design + Application (LD+A), vol. 20, n°6, 1990.

[War91a] G.J. Ward
Adaptive Shadow Testing for Ray Tracing
Second Eurographics Workshop on Rendering, Barcelona, Spain, 1991.

[War91b] G.J. Ward
RADIANCE Visual Comfort Calculation
Rapport interne, LESO, EPFL 1991.

[War91c] G.J. Ward
Real Pixels,
Graphics Gems II, Edited by J. Arvo, Academic Press, 1991.

[War92a] G.J. Ward, P.S. Heckbert
Irradiance Gradients
Third Eurographics Workshop on Rendering, Bristol, UK, 1992.

[War92b] G.J. Ward
Measuring and Modeling Anisotropic Reflection
Computer Graphics, vol. 26, n°2, 1992.

32

[War94a] G.J. Ward
A Contrast-Based Scalefactor for Luminance Display
Graphics Gems IV, Edited by P. Eckbert, Academic Press, 1994.

[War94b] G.J. Ward
The Radiance Lighting Simulation and Rendering System
Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH,
1994, pp. 459-472

[War94c] G.J. Ward
Applications of RADIANCE to Architecture and Lighting Design
IES conference proceedings, 1994.

[War95] G.J. Ward
Making Global Illumination User-Friendly
Eurographics Workshop on Rendering, 1995.

[War97] G.J. Ward, H. Rushmeier, C. Piatko
A Visibility Matching Tone Reproduction Operator for High
Dynamic Range Scenes
LBNL report 39882, LBNL Berkeley, 1997.

Acknowledgements

This tutorial and its associated example files were originally prepared in
January 1996 (in French) for a course requested by the "Architecture et
Climat" research group at the University of Louvain-la-Neuve (Belgium). At
that time the author was attached to the Laboratoire d'Energie Solaire et de
Physique du Bâtiment (LESO-PB) at the Federal Institute of Technology in
Lausanne, Switzerland (EPFL).

The present English version has been produced in July 1997 for a course
organised by the Low Energy Architecture Research Unit (LEARN) at the
University of North London while the author was attached as a visiting
associate to the Martin Centre for Architectural and Urban Studies at the
University of Cambridge, UK. Many thanks to Jo Dubiel for the assistance
provided in the preparation of this document.

WWW sites of the above mentioned research groups:

Martin Centre, Cambridge (UK):

http://www.arct.cam.ac.uk/mc/index.html

LEARN, London (UK):

http://www.unl.ac.uk/LEARN/

LESO-PB, Lausanne (Switzerland):

http://lesowww.epfl.ch/

Architecture et Climat, Louvain-la Neuve (Belgium):

http://www.gc.ucl.ac.be/arch/index.html

http://www.arct.cam.ac.uk/mc/index.html
http://www.unl.ac.uk/LEARN/
http://lesowww.epfl.ch/
http://www.gc.ucl.ac.be/arch/index.html

33

Appendix 1

Colour "trade"
name

Visual appearance Y x y

RAL9010 pure white 0.835 0.328 0.335
 2k216 beige 0.71 0.331 0.353
 2k218 beige 0.696 0.344 0.369
 1k117 off-white 0.688 0.32 0.341
 2k217 yellowish 0.683 0.341 0.362
 2k205 off-white 0.675 0.33 0.347
 6k605 light_gray 0.674 0.317 0.34
 4e400 sulfur-yellow 0.673 0.417 0.436
RAL1016 sulfur-yellow 0.673 0.417 0.436
 1k105 light_gray 0.667 0.32 0.336
 1e101 white-gray 0.666 0.328 0.336
RAL9002 white-gray 0.666 0.328 0.336
 1k101 light_gray 0.665 0.323 0.342
 2k206 cream 0.665 0.345 0.363
 2k201 beige 0.664 0.328 0.349
 2k208 beige 0.659 0.352 0.369
 7k701 pastel green 0.656 0.316 0.341
 1k122 light_gray 0.647 0.322 0.336
 2k219 ivory 0.644 0.335 0.359
 4k403 beige 0.64 0.362 0.378
 7k707 pastel green 0.634 0.327 0.352
 1k109 light_gray 0.633 0.314 0.33
 4k401 light_yellow 0.629 0.36 0.389
 1k113 light_gray 0.628 0.311 0.33
 7k709 greenish-white 0.623 0.326 0.349
 4k402 yellow 0.621 0.39 0.417
 8k801 yellow-green 0.621 0.375 0.431
 2k202 beige 0.595 0.336 0.357
 6k601 light_blue 0.587 0.307 0.33
 2k209 beige 0.584 0.344 0.354
 2k220 cream 0.578 0.351 0.375
 4k407 yellow 0.572 0.362 0.377
 7k710 light_green 0.572 0.322 0.358
 1k102 light_gray 0.57 0.322 0.341
 4k405 yellow 0.568 0.372 0.39
 7k702 green 0.565 0.303 0.343
 1k106 light_gray 0.563 0.316 0.332
 4k404 yellow 0.56 0.382 0.399
 7k704 green 0.55 0.316 0.341
 6k608 light_blue 0.548 0.301 0.32
 8k804 yellow 0.548 0.449 0.455
 1k119 green-gray 0.546 0.318 0.348
 6k609 blue-gray 0.541 0.303 0.321
RAL1023 traffic-yellow 0.541 0.449 0.443
 1k114 gray 0.533 0.306 0.327
 4k408 yellow 0.532 0.375 0.384
 1k110 light_gray 0.531 0.312 0.331
 2k203 cream 0.527 0.347 0.367
 2k222 beige 0.52 0.35 0.373
 4k406 ochre-yellow 0.512 0.394 0.399
 6k602 light_blue-gray 0.512 0.299 0.32
 1k111 light_gray 0.505 0.311 0.329
 7k708 green 0.497 0.331 0.373
 1k103 light_gray 0.496 0.324 0.343
 1k125 beige-gray 0.471 0.339 0.356
 3k305 beige-gray 0.464 0.325 0.345

34

 1k120 green-gray 0.462 0.318 0.345
 8k802 green 0.462 0.385 0.455
 4k409 yellow 0.46 0.397 0.425
 2k221 greenish-yellow 0.459 0.366 0.392
 3k301 light_gray 0.451 0.331 0.345
 2k204 beige 0.45 0.351 0.372
 2k210 beige 0.443 0.359 0.367
 1e123 pebble-gray 0.432 0.337 0.346
RAL7032 pebble-gray 0.432 0.337 0.346
 1k107 light_gray 0.432 0.317 0.336
 1k104 light_gray 0.43 0.327 0.345
 2k213 beige 0.428 0.363 0.376
 3k308 beige 0.427 0.344 0.36
 7k705 green-blue 0.422 0.31 0.342
 1k115 blue-gray 0.418 0.299 0.319
 2k223 yellow 0.413 0.358 0.384
 7k711 green 0.412 0.315 0.367
 6k603 light_blue 0.407 0.286 0.314
 2k214 yellow 0.406 0.379 0.395
 2k212 brownish-beige 0.398 0.379 0.378
 1k124 gray 0.395 0.324 0.337
 1k112 gray 0.393 0.306 0.323
 1k108 light_gray 0.388 0.317 0.335
 2k215 yellow 0.379 0.377 0.397
 1k116 blue-gray 0.378 0.298 0.318
 4e404 chrome-yellow 0.377 0.464 0.433
RAL1007 chrome-yellow 0.377 0.464 0.433
 2k225 brown 0.375 0.377 0.391
 4k410 yellow 0.374 0.432 0.413
 1k126 gray 0.368 0.335 0.354
 1k127 beige 0.367 0.345 0.364
 4k411 ochre 0.351 0.426 0.391
 2k211 brownish-yellow 0.337 0.37 0.379
 7k713 light_green 0.334 0.362 0.4
 6k604 blue 0.326 0.281 0.309
RAL2008 light_red-orange 0.323 0.469 0.408
 7k712 green 0.315 0.337 0.381
 3k306 gray 0.312 0.324 0.346
 4k412 orange-beige 0.307 0.427 0.396
 7k706 green-blue 0.305 0.309 0.35
 3k309 gray 0.3 0.329 0.344
 1e121 silver-gray 0.298 0.311 0.321
RAL7001 silver-gray 0.298 0.311 0.321
 2k224 olive 0.292 0.368 0.399
 7e712 pale green 0.287 0.341 0.364
RAL6021 pale green 0.287 0.341 0.364
 2k229 green 0.282 0.352 0.378
 2k228 brown 0.28 0.382 0.384
 1k128 beige 0.278 0.344 0.363
 2k227 brown 0.278 0.385 0.387
 2k226 brown 0.264 0.386 0.384
 1e122 stone-gray 0.259 0.332 0.34
RAL7030 stone-gray 0.259 0.332 0.34
 4k413 orange-brown 0.253 0.441 0.391
 8k803 olive 0.251 0.403 0.468
 1k129 gray 0.249 0.338 0.362
 3k302 light_gray 0.246 0.32 0.341
 3k311 gray 0.245 0.326 0.343
 4k414 light_brown 0.231 0.423 0.383
 5k505 red-brown 0.23 0.391 0.353
 7k714 green 0.22 0.354 0.409

35

RAL6018 yellow-green 0.218 0.376 0.45
 3k303 gray 0.217 0.321 0.343
 8k806 blue 0.209 0.242 0.263
 1e105 concrete-gray 0.201 0.332 0.341
RAL7023 concrete-gray 0.201 0.332 0.341
 8k805 orange-red 0.197 0.467 0.361
 3k310 gray 0.184 0.331 0.346
 3k312 brown-gray 0.179 0.347 0.356
 3k313 beige-brown 0.179 0.349 0.359
 7e704 reseda-green 0.169 0.349 0.379
RAL6011 reseda-green 0.169 0.349 0.379
 5e520 lilac-blue 0.169 0.277 0.264
RAL4005 lilac-blue 0.169 0.277 0.264
 3k307 gray 0.169 0.328 0.35
RAL2002 blood-orange 0.162 0.485 0.392
 3k304 dark_gray 0.149 0.329 0.346
 1k130 gray 0.147 0.308 0.337
 1k134 dark_gray 0.138 0.302 0.315
RAL6024 traffic-green 0.133 0.318 0.398
 1e119 blue-gray 0.121 0.304 0.317
RAL7031 blue-gray 0.121 0.304 0.317
 5e509 fire-red 0.119 0.473 0.381
RAL3000 fire-red 0.119 0.473 0.381
 7e706 emerald-green 0.086 0.351 0.427
RAL6001 emerald-green 0.086 0.351 0.427
RAL6016 turquoise-green 0.079 0.285 0.364
 7e711 olive-green 0.071 0.36 0.381
RAL6003 olive-green 0.071 0.36 0.381
RAL5017 traffic-blue 0.069 0.177 0.199
 5e504 ruby-red 0.065 0.488 0.376
RAL3003 ruby-red 0.065 0.488 0.376
 6e610 gentian-blue 0.052 0.183 0.196
RAL5010 gentian-blue 0.052 0.183 0.196
RAL4004 bordeaux-violet 0.042 0.408 0.32
 5e505 red-brown 0.042 0.467 0.368
RAL3004 red-brown 0.042 0.467 0.368
RAL5002 ultramarine 0.039 0.171 0.162
 3e311 mahogany-brown 0.032 0.415 0.381
RAL8016 mahogany-brown 0.032 0.415 0.381
 5e506 wine-red 0.029 0.45 0.359
RAL3005 wine-red 0.029 0.45 0.359
RAL4007 purple-violet 0.027 0.342 0.291
 6e605 sapphire-blue 0.026 0.202 0.207
RAL5003 sapphire-blue 0.026 0.202 0.207
RAL5022 midnight-blue 0.023 0.197 0.184

36

Appendix 2

1.
00

1.
00

.8
0

.2
0

3.
00

7.00

Vertical section of the room defined in room.rad (dimensions in [m]).

37

Appendix 3

VDU screens have usually a 4/3 (width/height) aspect ratio while
photographic films and slides have a 3/2 aspect ratio. To make a perspective
view (option -vtv) with one of these specific aspect ratios, the vertical view
angle (option -vv) must be adjusted to the chosen horizontal view angle
(option -vh) according to the following table:

-vh (degrees) -vv (degrees)
4/3 aspect ratio

-vv (degrees)
3/2 aspect ratio

5 3.75 3.33
10 7.51 6.68
15 11.28 10.03
20 15.07 13.41
25 18.88 16.81
30 22.73 20.26
35 26.61 23.74
40 30.54 27.28
45 34.52 30.87
50 38.55 34.54
55 42.65 38.28
60 46.83 42.1
65 51.08 46.02
70 55.41 50.05
75 59.84 54.18
80 64.37 58.45
85 69 62.84
90 73.74 67.38
95 78.6 72.07
100 83.58 76.93
105 88.69 81.97
110 93.93 87.19
115 99.31 92.6
120 104.82 98.21
125 110.47 104.03
130 116.26 110.06
135 122.18 116.29
140 128.23 122.73
145 134.4 129.38
150 140.68 136.21
155 147.07 143.21
160 153.54 150.37
165 160.09 157.66
170 166.69 165.05
175 173.34 172.51

38

The same field of view as a 24x36 camera with a lens of a specific focal
length can be obtained using a perspective view (option -vtv) with the view
angles adjusted according to this table:

Focal length of
camera lens (mm)

-vh (degrees) -vv (degrees)

17 93.27 70.44
28 65.47 46.40
35 54.43 37.85
50 39.60 26.99
85 23.91 16.07
135 15.19 10.16
300 6.87 4.58

Appendix 4

Table of values for ray tracing parameters as function of the required angular
resolution:

Angular
resolution
(degrees)

option
-ad

parameter "d"
of mkillum

option
-ds

1 33863247 10779006 0.02
2 2117743 674098 0.03
3 418745 133291 0.05
4 132682 42234 0.07
5 54446 17331 0.09
6 26315 8376 0.1
7 14242 4533 0.12
8 8374 2666 0.14
9 5246 1670 0.16
10 3455 1100 0.17
11 2370 754 0.19
12 1681 535 0.21
13 1227 391 0.23
14 917 292 0.25
15 700 223 0.26
16 544 173 0.28
17 430 137 0.3
18 345 110 0.32
19 280 89 0.33
20 230 73 0.35
21 190 61 0.37
22 160 51 0.39
23 135 43 0.41
24 115 37 0.43
25 98 31 0.44
26 85 27 0.46
27 74 24 0.48
28 65 21 0.5
29 57 18 0.52
30 50 16 0.54

39

Appendix 5

av

vp

LEGEND:

view point

Traced ray

Constant ambient
value

Ambient value
sphere of influence

Direct ray traced toward a
light source

Indicatrix of diffusion of a
light source

40

Appendix 6

Example files are listed in the following pages:

rgb.cal... 41
cie.rad... 42
wsol12.rad.. 43
pcyl.cal... 44
axis.cal... 45
mat.rad... 46
room.rad... 47
system.rad.. 49
desk.rad... 51
chair.rad .. 52
isystem.rad.. 54
ulim.cal... 57
pmat.rad... 58
plate.cal .. 59
cell.rif... 60

Note that the data files ashelf.dat illum.dat and window.dat
that are also necessary for the exercises are not listed hereafter.
However, they are stored with all other example files in the archive
files: rc97tut.tar.Z or rc97tut.zip

41

rgb.cal
{ Colour model transformation from Yxy to rgb
 R. Compagnon, Martin Centre, Cambridge UK, 04/JUN/97

 Input data: Y x y
 Output data: Cr Cg Cb or normalized values Crn Cgn Cbn
}

X=x*Y/y;
Z=(1-x-y)*Y/y;

r= 2.739*X -1.145*Y -0.424*Z;
g= -1.119*X +2.029*Y +0.033*Z;
b= 0.138*X -0.333*Y +1.105*Z;

Cr=floor(1000*r+0.5)/1000;
Cg=floor(1000*g+0.5)/1000;
Cb=floor(1000*b+0.5)/1000;

n=.263*r+.655*g+.082*b;

Crn=floor(1000*r/n+.5)/1000;
Cgn=floor(1000*g/n+.5)/1000;
Cbn=floor(1000*b/n+.5)/1000;

42

cie.rad
CIE overcast sky
Horizontal illuminance: 10000 Lux
Ground reflectance: 0.1

!gensky 1 1 1 -c -b 22.8634396 -g 0.1

skyfunc glow sky_glow
0
0
4 1 1 1 0

sky_glow source sky
0
0
4 0 0 1 180

skyfunc glow ground_glow
0
0
4 1 1 1 0

ground_glow source ground
0
0
4 0 0 -1 180

43

wsol12.rad
Intermediate sky with sun
Winter solstice (21 decembre) at 12:00 (local time)

Parametres for Louvain-la-Neuve (Belgium):
latitude: -a 50.67
longitude: -o -4.6
meridian: -m -15
Note that the meridian is given in degrees!
For summer time it would be -m -30
ground reflectance: -g 0.1

!gensky 12 21 12 +i -a 50.67 -o -4.6 -m -15 -g 0.1

skyfunc glow sky_glow
0
0
4 1 1 1 0

sky_glow source sky
0
0
4 0 0 1 180

skyfunc glow ground_glow
0
0
4 1 1 1 0

ground_glow source ground
0
0
4 0 0 -1 180

44

pcyl.cal
{ Definitions for cylindrical projection
 R. Compagnon, Martin Centre, Cambridge UK, 04/JUN/97 }

{ Parameters defined externaly:
 XD : horizontal picture dimension (pixels)
 YD : vertical picture dimension (pixels)
 AM : altitude at the bottom line of the picture (degrees) }

{ Direction of the current pixel (angles in radians) }
px=$2;
py=YD-$1;
altitude=(AM+py*(90-AM)/YD)*PI/180;
azimut=((px-XD/2)*360/XD)*PI/180;

{ Transformation into a direction vector }
n=sqrt(1+sin(altitude)^2);
dx=-sin(azimut)*cos(altitude);
dy=-cos(azimut)*cos(altitude);
dz=sin(altitude);

{ Output line to rtrace }
$1=0;$2=0;$3=0;
$4=dx;$5=dy;$6=dz;

45

axis.cal
{ Axis for cylindrical projection
 R. Compagnon, Martin Centre, Cambridge UK, 04/JUN/97 }

{ Parameters defined externaly:
 XD : horizontal picture dimension (pixels)
 YD : vertical picture dimension (pixels)
 AM : altitude at the bottom line of the picture (degrees) }

{ Position of the axis }
div_H=15; { division between altitude lines (in degrees) }
div_V=30; { division between azimuth lines (in degrees) }
h1=AM+y*(90-AM)/YD;
h2=AM+(y+1)*(90-AM)/YD;
axe_h=if(floor(h2/div_H)-floor(h1/div_H),1,0);
a1=x*360/XD;
a2=(x+1)*360/XD;
axe_v=if(floor(a2/div_V)-floor(a1/div_V),1,0);
axe=if(axe_h+axe_v,1,0);

{ pcomb output radiances }
ro=if(axe,1,ri(1));
go=if(axe,1,gi(1));
bo=if(axe,1,bi(1));

46

mat.rad
void plastic walls_mat
0
0
5 .6 .6 .6 0 0

void plastic south_wall_mat
0
0
5 .6 .6 .6 0 0

void plastic frame_mat
0
0
5 .683 .476 .261 0 0

void plastic ceiling_mat
0
0
5 0.8 0.8 0.8 0 0

void plastic floor_mat
0
0
5 0.433 0.118 0.073 0.03 0.1

void mirror reflector
0
0
3 .8 .8 .8

80 % transmittance glass
void glass trans80
0
0
3 .8715 .8715 .8715

90 % transmittance glass
void glass trans90
0
0
3 .98 .98 .98

47

room.rad
ceiling_mat polygon ceiling
0
0
12
 0 7 3
 5 7 3
 5 0 3
 0 0 3

floor_mat polygon floor
0
0
12
 0 0 0
 5 0 0
 5 7 0
 0 7 0

walls_mat polygon wall_W
0
0
12
 0.001 0 0
 0.001 7 0
 0.001 7 3
 0.001 0 3

walls_mat polygon wall_N
0
0
12
 0 7 0
 5 7 0
 5 7 3
 0 7 3

walls_mat polygon wall_E
0
0
12
 4.999 7 0
 4.999 0 0
 4.999 0 3
 4.999 7 3

frame_mat polygon wall_S
0
0
12
 5 0 0
 0 0 0
 0 0 1
 5 0 1

48

frame_mat polygon frame_E
0
0
12
 5 0 1
 4.8 0 1
 4.8 0 3
 5 0 3

frame_mat polygon frame_W
0
0
12
 0.2 0 1
 0 0 1
 0 0 3
 0.2 0 3

frame_mat polygon frame_S
0
0
12
 4.8 0 2
 0.2 0 2
 0.2 0 2.2
 4.8 0 2.2

south_wall_mat polygon tablette
0
0
12
 0 0 .8
 5 0 .8
 5 .2 .8
 0 .2 .8

south_wall_mat polygon contre-coeur
0
0
12
 0 .2 0
 0 .2 .8
 5 .2 .8
 5 .2 0

49

system.rad
#@mkillum n

!genprism reflector ashelf ashelf.dat -c -e -l 0 0 5 | \
xform -rx 90 -rz 90 -t 0 0 3

ceiling_mat polygon cache_H
0
0
12
 5 1.52412861 2.1
 5 0 2.1
 0 0 2.1
 0 1.52412861 2.1

frame_mat polygon cache_V
0
0
12
 5 1.52412861 2.1
 0 1.52412861 2.1
 0 1.52412861 2.12004394
 5 1.52412861 2.12004394

frame_mat polygon side1
0
0
12
 0 1.52412861 2.1
 0 1.52412861 3
 0.2 1.52412861 3
 0.2 1.52412861 2.1

frame_mat polygon side2
0
0
12
 5 1.52412861 2.1
 4.8 1.52412861 2.1
 4.8 1.52412861 3
 5 1.52412861 3

reflector polygon side_refl1
0
0
12
 0.2 0 2.12004394
 0.2 1.52412861 2.12004394
 0.2 1.52412861 3
 0.2 0 3

reflector polygon side_refl2
0
0
12
 4.8 0 2.12004394
 4.8 0 3
 4.8 1.52412861 3
 4.8 1.52412861 2.12004394

50

trans80 polygon upper_window
0
0
12
 4.8 0 2.12004394
 0.2 0 2.12004394
 0.2 0 3
 4.8 0 3

trans90 polygon interior_window
0
0
12
 4.8 1.52412861 2.12004394
 0.2 1.52412861 2.12004394
 0.2 1.52412861 3
 4.8 1.52412861 3

#@mkillum i=trans80 d=223 s=115 m=window
trans80 polygon view_window
0
0
12
 4.8 0 1
 0.2 0 1
 0.2 0 2
 4.8 0 2

#@mkillum i=void d=1100 s=202 m=illum
void polygon illuminator
0
0
12
 0.2 1.52412861 2.12004394
 0.2 0 3
 4.8 0 3
 4.8 1.52412861 2.12004394

#@mkillum n

51

desk.rad
#
Office desk 1.6x0.8 M
#

#@mkillum n

void plastic colour_grey
0
0
5 0.4 0.4 0.4 0.03 0.1

!genbox colour_grey tiroir 0.45 0.8 0.605 | xform -t 1.12 0 .13
!genbox colour_grey tiroir 0.45 0.8 0.605 | xform -t .03 0 .13
!genbox colour_grey plateau 1.6 .8 .025 | xform -t 0 0 .775

void metal metal_noir
0
0
5 0.1 0.1 0.1 0.03 0

!genprism metal_noir cadre 4 0 0 1.6 0 1.6 .8 0 .8 -e -l 0 0 .04 | \
 xform -t 0 0 .735
!genprism metal_noir pied 4 0 0 .03 0 .03 .03 0 .03 -e -l 0 0 .77
!genprism metal_noir pied 4 0 .77 .03 .77 .03 .8 0 .8 -e -l 0 0 .77
!genprism metal_noir pied 4 1.57 0 1.6 0 1.6 .03 1.57 .03 -e \
 -l 0 0 .77
!genprism metal_noir pied 4 1.57 .77 1.6 .77 1.6 .8 1.57 .8 -e \
 -l 0 0 .77

void plastic ral3004
0
0
5 0.09 0.026 0.014 0.03 0.1

!genbox ral3004 sousmain 0.8 0.6 0.001 | xform -t .4 .1 .8

52

chair.rad
#
Office chair
#
void metal chrome
0
0
5 0.5 0.5 0.5 0.6 0

void plastic noir
0
0
5 0.1 0.1 0.1 0.03 0

void plastic tissu
0
0
5 0.09 0.026 0.014 0 0

!genprism chrome prism 4 0 0 0 .05 .27 .03 .27 0 -l 0 0 .02 | \
 xform -rx 90 -t 0.035 -0.01 0.06

noir sphere roulette
0
0
4 0.305 0 0.03 0.03

!genprism chrome prism 4 0 0 0 .05 .27 .03 .27 0 -l 0 0 .02 | \
 xform -rx 90 -t 0.035 -0.01 0.06 -rz 72

noir sphere roulette
0
0
4 0.094 0.290 0.03 0.03

!genprism chrome prism 4 0 0 0 .05 .27 .03 .27 0 -l 0 0 .02 | \
 xform -rx 90 -t 0.035 -0.01 0.06 -rz 144

noir sphere roulette
0
0
4 -0.247 0.179 0.03 0.03

!genprism chrome prism 4 0 0 0 .05 .27 .03 .27 0 -l 0 0 .02 | \
 xform -rx 90 -t 0.035 -0.01 0.06 -rz 216

noir sphere roulette
0
0
4 -0.247 -0.179 0.03 0.03

!genprism chrome prism 4 0 0 0 .05 .27 .03 .27 0 -l 0 0 .02 | \
 xform -rx 90 -t 0.035 -0.01 0.06 -rz 288

53

noir sphere roulette
0
0
4 0.094 -0.290 0.03 0.03

noir cone cylindre
0
0
8

0 0 0.06
0 0 0.41
0.035 0.04

!genbox chrome lien .03 .0015 .3 | \
 xform -t -0.015 -0.2 0.41

!genbox tissu coussin .4 .4 .04 -r .01 | \
 xform -t -0.2 -0.2 0.41

!genbox tissu dossier .4 .04 .22 -r .01 | \
 xform -t -0.2 0 -0.11 -rx 15 -t 0 -0.2 0.71

54

isystem.rad
mkillum -ab 0 modele0.oct
#@mkillum !
mkillum n

!genprism reflector ashelf ashelf.dat -c -e -l 0 0 5 | \
xform -rx 90 -rz 90 -t 0 0 3

ceiling_mat polygon cache_H
0
0
12
 5 1.52412861 2.1
 5 0 2.1
 0 0 2.1
 0 1.52412861 2.1

frame_mat polygon cache_V
0
0
12
 5 1.52412861 2.1
 0 1.52412861 2.1
 0 1.52412861 2.12004394
 5 1.52412861 2.12004394

frame_mat polygon side1
0
0
12
 0 1.52412861 2.1
 0 1.52412861 3
 0.2 1.52412861 3
 0.2 1.52412861 2.1

frame_mat polygon side2
0
0
12
 5 1.52412861 2.1
 4.8 1.52412861 2.1
 4.8 1.52412861 3
 5 1.52412861 3

reflector polygon side_refl1
0
0
12
 0.2 0 2.12004394
 0.2 1.52412861 2.12004394
 0.2 1.52412861 3
 0.2 0 3

reflector polygon side_refl2
0
0
12
 4.8 0 2.12004394
 4.8 0 3
 4.8 1.52412861 3
 4.8 1.52412861 2.12004394

55

trans80 polygon upper_window
0
0
12
 4.8 0 2.12004394
 0.2 0 2.12004394
 0.2 0 3
 4.8 0 3

trans90 polygon interior_window
0
0
12
 4.8 1.52412861 2.12004394
 0.2 1.52412861 2.12004394
 0.2 1.52412861 3
 4.8 1.52412861 3
mkillum i=trans80 d=223 s=115 m=window

void brightdata window.dist
5 noneg window.dat

illum.cal il_alth il_azih
0
9

-1.000000 0.000000 0.000000
0.000000 0.000000 1.000000
0.000000 1.000000 0.000000

window.dist illum window
1 trans80
0
3 5.626943 5.626943 5.626943

window polygon view_window
0
0
12
 4.8 0 1
 0.2 0 1
 0.2 0 2
 4.8 0 2

mkillum i=void d=1100 s=202 m=illum

void brightdata illum.dist
5 noneg illum.dat

illum.cal il_alth il_azih
0
9

-1.000000 0.000000 0.000000
0.000000 -0.866025 0.500000
0.000000 0.500000 0.866025

illum.dist illum illum
0
0
3 1.453124 1.453124 1.453124

56

illum polygon illuminator
0
0
12
 0.2 1.52412861 2.12004394
 0.2 0 3
 4.8 0 3
 4.8 1.52412861 2.12004394
mkillum n

57

ulim.cal

{ Approximate upper limit without glare related to adaptation level

 RC @ Martin Centre, Cambridge UK, 26/FEB/97
}

{ footlambert to cd/m2 conversion }
fl2cd(v)=3.426*v;
cd2fl(v)=.292*v;

{ Approximate upper limit without glare }
ulim(La)=fl2cd(10^(5.731+(log10(cd2fl(La))+5)*
 (0.3376+(log10(cd2fl(La))+5)*0.0189)-6));

58

pmat.rad
void colorfunc skirting_board
4 if(Pz-0.06,1,0.309/0.6) if(Pz-0.06,1,0.165/0.6)
 if(Pz-0.06,1,0.083/0.6) .
0
0

skirting_board plastic walls_mat
0
0
5 .6 .6 .6 0 0

skirting_board plastic south_wall_mat
0
0
5 .6 .6 .6 0 0

void plastic frame_mat
0
0
5 .683 .476 .261 0 0

void texfunc plate
4 0 y_pert 0 plate.cal
0
2 .25 .02

plate plastic ceiling_mat
0
0
5 0.8 0.8 0.8 0 0

void brightfunc parquet
2 0.6*rand(floor(Px/0.2)*floor(Py/0.05))+0.7 .
0
0

parquet plastic floor_mat
0
0
5 0.433 0.118 0.073 0.03 0.1

void mirror reflector
0
0
3 .8 .8 .8

80 % transmittance glass
void glass trans80
0
0
3 .8715 .8715 .8715

90 % transmittance glass
void glass trans90
0
0
3 .98 .98 .98

59

plate.cal

{ Definition of ceiling plates texture
 RC LESO-PB 16/JAN/96
 Parameters: A1= total length

 A2= empty space width between plates }

l=A1;
lb=A2;
la=l-lb;

position=Py-floor(Py/l)*l;
y_pert=if(la-position,

0, { no perturbation on the plate }
if(position-la-lb/2,

 -1, { face 2 }
+1 { face 1 }

)
);

60

cell.rif
OCTREE= model.oct

scene= cie.rad room.rad
material= pmat.rad

illum=system.rad
mkillum=-ab 0

objects=ashelf.dat

ZONE= I 0 5 0 7 0 3

EXPOSURE= 1.79

QUALITY= M

RESOLUTION= 480

INDIRECT= 1

AMBFILE= cell.amb

render= -dr 0 -av .01 .01 .01

view= v1 -vp 4.5 6.5 1.5 -vd -1 -2 0 -vh 90 -vv 67.4
view= v1i -i -vp 4.5 6.5 1.5 -vd -1 -2 0 -vh 90 -vv 67.4
view= fe -vth -vp 2.5 4.9 1.5 -vd 0 -1 0 -vh 180 -vv 180
view= p -vtl -vp 2.5 3.5 1.5 -vd 0 0 -1 -vu -1 0 0 -vh 7 -vv 5

	Table of contents
	Introduction
	Physical basis
	General structure of the software
	Structure of a "scene" file
	Model of a sky
	Interactive visualisation using rview
	The "exposure" of a RADIANCE picture
	Rendering a picture using rpict
	Special projections using rtrace
	Picture processing
	Model of a room daylit by an anidolic light-shelf
	How ray tracing works within RADIANCE
	Illuminance calculations
	False colour pictures
	Assessing discomfort glare
	Simulations with sunny skies
	A few words on textures and patterns
	Automation of the rendering process using rad
	RADIANCE distribution and user support
	References
	Acknowledgements
	Appendix 1
	Appendix 2
	Appendix 3
	Appendix 4
	Appendix 5
	Appendix 6 (Example Files)
	rgb.cal
	cie.rad
	wsol12.rad
	pcyl.cal
	axis.cal
	mat.rad
	room.rad
	system.rad
	desk.rad
	chair.rad
	isystem.rad
	ulim.cal
	pmat.rad
	plate.cal
	cell.rif

